MiRNA profiling as a diagnostic feature of congestive heart failure. A scoping review
https://doi.org/10.38109/2225-1685-2025-4-96-103
Abstract
Congestive heart failure (CHF) is a highly prevalent clinical syndrome that winds up any starting point of a cardiovascular continuum. It is therefore a precious point on the agenda for the world leading scientists and investigators, who aim to understand the full spectrum of its underlying molecular and pathophysiological defects. In spite of a wide range of modern diagnostics techniques, it is still a clinical burden to correctly diagnose CHF among other clinically similar nosology’s. As a consequence, extreme attention is now brought to the epigenetics of a sustaining heart homeostasis. Small non-coding RNAs, called microRNAs (miRNAs) are considered to play an important role in cardiac metabolism management. MiRNA do not only regulate transcription and post-translational gene expression patterns but also account for the matrixRNAs (mRNAs) translation. Various types of miRNAs are involved in certain pathophysiological processes, such as cardiac structural remodeling, cellular apoptosis, angiogenesis and persistent inflammation – all accounting for the CHF progression. Potential use of miRNAs as a CHF diagnostic biomarker is now actively proposed by a large number of studies. Reasons behind include their prevalence in all types of investigative fluids, sample stability and most importantly, an ability to be precisely spotted with the aid of modern techniques. Current article is primarily dedicated to the underlying biology of miRNAs action and their role in CHF development.
About the Authors
V. V. KonyaevRussian Federation
Vladislav V. Konyaev, clinical intern, Internal diseases propadeutics Department
63a Suvorovsky Ave., St. Petersburg 191124
T. S. Sveklina
Russian Federation
Tatiana S. Sveklina, Cand. of Sci. (Med.), Associate Professor, Internal diseases propadeutics Department
63a Suvorovsky Ave., St. Petersburg 191124
V. A. Kozlov
Russian Federation
Vadim A. Kozlov, Dr. of Sci. (Biol.), Cand. of Sci. (Med.), professor of the Department of medical biology with course of microbiology and virology; Leading Researcher
Moskovsky Prospect, 15, Cheboksary 428015
Mikhail Sespel Street, 27, Cheboksary 428003
S. N. Kolyubaeva
Russian Federation
Svetlana N. Kolyubaeva, Dr. of Sci. (Biol.), Professor of the biology department and senior fellow at the research laboratory
63a Suvorovsky Ave., St. Petersburg 191124
A. N. Kuchmin
Russian Federation
Alexey N. Kuchmin, Dr. of Sci. (Med.), Professor of the Internal diseases propadeutics Department
63a Suvorovsky Ave., St. Petersburg 191124
P. D. Oktysyuk
Russian Federation
Polina D. Oktysyuk, clinical intern, Internal diseases propadeutics, Department
63a Suvorovsky Ave., St. Petersburg 191124
P. A. Slizhov
Russian Federation
Pavel A. Slizhov, junior researcher, SIL (tissue engineering) SID (Biomedical Research) of SIC
63a Suvorovsky Ave., St. Petersburg 191124
References
1. Polyakov D.S., Fomin I.V., Belenkov Yu.N., et al. Chronic heart failure in the Russian Federation: what has changed over 20 years of followup? Results of the EPOCH-CHF study. Kardiologiia. 2021;61(4):414. (In Russ.). https://doi.org/10.18087/cardio.2021.4.n1628]
2. Lee D.S., Pencina M.J., Benjamin E.J., et al. Association of parental heart failure with risk of heart failure in offspring. N Engl J Med. 2006;355:138-47. https://doi.org/10.1056/NEJMoa052948
3. Skrzynia C., Berg J.S., Willis M.S., Jensen B.C. Genetics and heart failure: a concise guide for the clinician. Curr Cardiol Rev. 2015;11(1):10-7. https://doi.org/10.2174/1573403x09666131117170446
4. Chen S., Feng J., Ma L., et al. RNA interference technology for antiVEGF treatment. Expert Opin Drug Deliv. 2014;11(9):1471-1480. https://doi.org/10.1517/17425247.2014.926886
5. Tian C., Gao L., Rudebush T.L., et al. Extracellular Vesicles Regulate Sympatho-Excitation by Nrf2 in Heart Failure. Circ Res. 2022;131(8):687-700. https://doi.org/10.1161/CIRCRESAHA.122.320916
6. Qin X., Karlsson I.K., Wang Y., et al. The epigenetic etiology of cardiovascular disease in a longitudinal Swedish twin study. Clin Epigenetics. 2021;13(1):129. https://doi.org/10.1186/s13148-021-01113-6
7. Xavier M.J., Roman S.D., Aitken R.J., Nixon B. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update. 2019;25(5):518-540. https://doi.org/10.1093/humupd/dmz017
8. Desai A.S., Lam C.S.P., McMurray J.J.V., Redfield M.M. How to Manage Heart Failure With Preserved Ejection Fraction: Practical Guidance for Clinicians. JACC Heart Fail. 2023;11(6):619-636. https://doi.org/10.1016/j.jchf.2023.03.011
9. Small E.M., Frost R.J., Olson E.N. MicroRNAs add a new dimension to cardiovascular disease. Circulation. 2010;121(8):1022-1032. https://doi.org/10.1161/CIRCULATIONAHA.109.889048
10. Abashkin V.M., Dzmitruk O.G., Shcharbin D.G. Small noncoding RNA: biological functions and biomedical application. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya biyalagichnych navuk. 2018;63(2):232–244. (In Russ.). https://doi.org/10.29235/1029-8940-2018-63-2-232-244]
11. Ha M., Kim V.N. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509-524. https://doi.org/10.1038/nrm3838
12. O'Brien J., Hayder H., Zayed Y., Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne). 2018;9:402. https://doi.org/10.3389/fendo.2018.00402
13. Novina C.D., Sharp P.A. The RNAi revolution. Nature. 2004;430(6996):161-164. https://doi.org/10.1038/430161a
14. Rani V., Sengar R.S. Biogenesis and mechanisms of microRNAmediated gene regulation. Biotechnol Bioeng. 2022;119(3):685-692. https://doi.org/10.1002/bit.28029
15. Roberts L.B., Kapoor P., Howard J.K., et al. An update on the roles of immune system-derived microRNAs in cardiovascular diseases. Cardiovasc Res. 2021;117(12):2434-2449. https://doi.org/10.1093/cvr/cvab007
16. García-López J, Brieño-Enríquez MA, Del Mazo J. MicroRNA biogenesis and variability. Biomol Concepts. 2013;4(4):367-380. https://doi.org/10.1515/bmc-2013-0015
17. van Rooij E., Olson E.N. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest. 2007;117(9):2369-2376. https://doi.org/10.1172/JCI33099
18. Cao R.Y., Li Q., Miao Y., et al. The Emerging Role of MicroRNA-155 in Cardiovascular Diseases. Biomed Res Int. 2016;2016:9869208. https://doi.org/10.1155/2016/9869208
19. Valadi H., Ekström K., Bossios A., et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-659. https:// doi.org/10.1038/ncb1596
20. Edgar J.R. Q&A: What are exosomes, exactly? BMC Biol. 2016;14:46. https://doi.org/10.1186/s12915-016-0268-z
21. Sygitowicz G., Maciejak-Jastrzębska A., Sitkiewicz D. MicroRNAs in the development of left ventricular remodeling and postmyocardial infarction heart failure. Pol Arch Intern Med. 2020;130(1):59-65. https://doi.org/10.20452/pamw.15137
22. Huang Y., Huang Y., Cai Z., et al. MiR-21-3p inhibitor exerts myocardial protective effects by altering macrophage polarization state and reducing excessive mitophagy. Commun Biol. 2024;7(1):1371. https://doi.org/10.1038/s42003-024-07050-3
23. van Rooij E., Sutherland L.B., Liu N., et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006;103(48):18255-18260. https://doi.org/10.1073/pnas.0608791103
24. Feng H., Wu J., Chen P., et al. MicroRNA-375-3p inhibitor suppresses angiotensin II-induced cardiomyocyte hypertrophy by promoting lactate dehydrogenase B expression. J Cell Physiol. 2019;234(8):14198-14209. https://doi.org/doi:10.1002/jcp.28116
25. Mohammadi A., Balizadeh Karami A.R., Dehghan Mashtani V., et al. Evaluation of Oxidative Stress, Apoptosis, and Expression of MicroRNA-208a and MicroRNA-1 in Cardiovascular Patients. Rep Biochem Mol Biol. 2021;10(2):183-196. https://doi.org/10.52547/rbmb.10.2.183
26. Zhang X.T., Xu M.G. Potential link between microRNA-208 and cardiovascular diseases. J Xiangya Med 2021;6:12. https://doi.org/10.21037/jxym-21-8
27. Liu Z., Tao B., Fan S., et al. Over-expression of microRNA-145 drives alterations in β-adrenergic signaling and attenuates cardiac remodeling in heart failure post myocardial infarction. Aging (Albany NY). 2020;12(12):11603-11622. https://doi.org/10.18632/aging.103320
28. Shyu K.G., Wang B.W., Cheng W.P., Lo H.M. MicroRNA-208a Increases Myocardial Endoglin Expression and Myocardial Fibrosis in Acute Myocardial Infarction. Can J Cardiol. 2015;31(5):679-690. https://doi.org/10.1016/j.cjca.2014.12.026
29. MacDonald B.T., Tamai K., He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):926. https://doi.org/10.1016/j.devcel.2009.06.016
30. Cui S., Liu Z., Tao B., et al. miR-145 attenuates cardiac fibrosis through the AKT/GSK-3β/β-catenin signaling pathway by directly targeting SOX9 in fibroblasts. J Cell Biochem. 2021;122(2):209-221. https://doi.org/10.1002/jcb.29843
31. Liu Y., Hu J., Wang W., Wang Q. MircroRNA-145 Attenuates Cardiac Fibrosis Via Regulating Mitogen-Activated Protein Kinase Kinase Kinase 3. Cardiovasc Drugs Ther. 2023;37(4):655-665. https://doi.org/10.1007/s10557-021-07312-w
32. Yuan Y., Mei Z., Qu Z., et al. Exosomes secreted from cardiomyocytes suppress the sensitivity of tumor ferroptosis in ischemic heart failure. Signal Transduct Target Ther. 2023;8(1):121. https://doi.org/10.1038/s41392-023-01336-4
33. Ottaviani L., Juni R.P., de Abreu R.C., et al. Intercellular transfer of miR-200c-3p impairs the angiogenic capacity of cardiac endothelial cells. Mol Ther. 2022;30(6):2257-2273. https://doi.org/10.1016/j.ymthe.2022.03.002
34. Çakmak H.A., Demir M. MicroRNA and Cardiovascular Diseases. Balkan Med J. 2020;37(2):60-71. https://doi.org/10.4274/balkanmedj.galenos.2020.2020.1.94
35. Golovenkin S.E., Nikulina S.Yu., Bubnova M.G., et al. Influence of genetic characteristics of patients on systolic and diastolic function after acute myocardial infarction: a literature review. Russian Journal of Cardiology. 2023;28(10):5536. (In Russ.) https://doi.org/10.15829/1560-4071-2023-5536]
36. Yan Z., He J.L., Guo L., et al. Activation of caspase-12 at early stage contributes to cardiomyocyte apoptosis in trauma-induced secondary cardiac injury. Sheng Li Xue Bao. 2017;69(4):367-377. PMID: 28825094.
37. Wang J., Liew O.W., Richards A.M., Chen Y.T. Overview of MicroRNAs in Cardiac Hypertrophy, Fibrosis, and Apoptosis. Int J Mol Sci. 2016;17(5):749. https://doi.org/10.3390/ijms17050749
38. Pan J., Zhou L., Lin C., et al. MicroRNA-34a Promotes IschemiaInduced Cardiomyocytes Apoptosis through Targeting Notch1. Evid Based Complement Alternat Med. 2022;2022:1388415. https://doi.org/10.1155/2022/1388415
39. Liu L., Zhang G., Liang Z., et al. MicroRNA-15b enhances hypoxia/ reoxygenation-induced apoptosis of cardiomyocytes via a mitochondrial apoptotic pathway. Apoptosis. 2014;19(1):19-29. https://doi.org/10.1007/s10495-013-0899-2
40. Ho P.T.B., Clark I.M., Le L.T.T. MicroRNA-Based Diagnosis and Therapy. Int J Mol Sci. 2022;23(13):7167. https://doi.org/10.3390/ijms23137167
41. Kramna D., Riedlova P., Jirik V. MicroRNAs as a Potential Biomarker in the Diagnosis of Cardiovascular Diseases. Medicina (Kaunas). 2023;59(7):1329. https://doi.org/10.3390/medicina59071329
42. Kabłak-Ziembicka A., Badacz R., Okarski M., et al. Cardiac microRNAs: diagnostic and therapeutic potential. Arch Med Sci. 2023;19(5):1360-1381. https://doi.org/10.5114/aoms/169775
Review
For citations:
Konyaev V.V., Sveklina T.S., Kozlov V.A., Kolyubaeva S.N., Kuchmin A.N., Oktysyuk P.D., Slizhov P.A. MiRNA profiling as a diagnostic feature of congestive heart failure. A scoping review. Eurasian heart journal. 2025;(4):96-103. (In Russ.) https://doi.org/10.38109/2225-1685-2025-4-96-103























