Preview

Eurasian heart journal

Advanced search

Modern problems of valvular conduits in children with cardiovascular diseases

https://doi.org/10.38109/2225-1685-2025-3-78-84

Abstract

Right ventricular outflow tract anomaly in young children can occur both in isolation and as part of a group of congenital heart defects. Such patients require radical correction of the defect from an early age, one of the elements of which is the formation of an outflow tract from the right ventricle to the pulmonary artery. Despite the wide variety of valve prostheses and valve-containing conduits on the world market (pulmonary allograft (CryoLife, USA), xenoconduits Contegra (Medtronic Inc., Minneapolis, MN), Freestyle (Medtronic Inc., Minneapolis, MN), ePTFE conduit (W.L. Gore & Associates Inc, Flagstaff, AZ, USA), DP-BYVC (Yaxin Medical Technology Co., Ltd., Wuhan, China)), there is currently no ideal graft that would be free from repeated prosthetics. The problem of choosing the optimal conduit for the reconstruction of the right ventricular outflow tract remains relevant, since one of a number of reasons for the development of RVPA conduit dysfunction is the lack of growth ability as the child grows. However, the development of tissue engineering technologies in cardiovascular surgery may lead to the development of new valve-containing conduits (Xeltis, XeltisXPC), which may become a worthy alternative to existing conduits for RVOT-PA reconstruction and reduce the number of reoperations in the group of patients with RV outflow tract anomalies.

About the Authors

E. N. Amansakhatova
Novosibirsk State University
Russian Federation

Ekaterina N. Amansakhatova, Researcher intern, Meshalkin National Medical Research Center; Student 

1 Pirogova St., Novosibirsk 630090 



N. R. Nichay
Meshalkin National Medical Research Center; Novosibirsk State Medical University
Russian Federation

Nataliya R. Nichay, Cand. of Sci. (Med.), Researcher, Cardiovascular Surgeon, Cardiosurgical Department No. 1; Assistant Professor, Department of Cardiovascular Surgery, Faculty of Advanced Training and Professional Retraining of Doctors 

Novosibirsk 



Yu. Kulyabin
Meshalkin National Medical Research Center, Novosibirsk
Russian Federation

Yury Yu. Kulyabin, Cand. of Sci. (Med.), Researcher, Cardiovascular Surgeon, Cardiosurgical Department No. 1 



S. A. Magbulova
Meshalkin National Medical Research Center
Russian Federation

Saihuna A. Magbulova, Postgraduate, Cardiovascular Surgeon, Cardiosurgical Department No. 1 

Novosibirsk 



I. A. Soynov
Meshalkin National Medical Research Center
Russian Federation

Ilya A. Soynov, Dr. of Sci. (Med.), Head of the Research Department of Congenital heart defects, Cardiovascular Surgeon, Cardiosurgical Department No. 1 

Novosibirsk 



References

1. Wu W., He J., Shao X. Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990- 2017. Medicine (Baltimore). 2020;99(23):e20593. https://doi.org/10.1097/MD.0000000000020593

2. Manukyan SN, Soynov IA, Voitov AV, Rzaeva KA, Baranov AA, Bogachev-Prokofiev AV. Modern possibilities for transcatheter pulmonary valve replacement. Pirogov Russian Journal of Surgery. 2024;(2):32-44. (In Russ.) https://doi.org/10.17116/hirurgia202402132

3. Arunamata A., Goldstein B.H. Right ventricular outflow tract anomalies: Neonatal interventions and outcomes. Semin Perinatol. 2022;46(4):151583. https://doi.org/10.1016/j.semperi.2022.151583

4. Harris A.G., Iacobazzi D., Caputo M., Bartoli-Leonard F. Graft rejection in paediatric congenital heart disease. Transl Pediatr. 2023;12(8):1572-1591. https://doi.org/10.21037/tp-23-80

5. Husain S.A. A Comparative Analysis of Nontraditional Right Ventricle to Pulmonary Artery Conduits: Maybe We Should Judge the Book by Its Cover? The Annals of Thoracic Surgery. 2021;112(3):837-838 https://doi.org/10.1016/j.athoracsur.2020.08.051

6. Soynov IA, Zhuravleva IIu, Kulyabin YuYu, Nichay NR, Afanas'ev AV, Aleshkevich NP, Bogachev-Prokof'ev AV, Karas'kov AM. Valved conduits in pediatric cardiac surgery. Pirogov Russian Journal of Surgery. 2018;(1):75-81. (In Russ.) https://doi.org/10.17116/hirurgia2018175-81

7. Huyan Y., Chang Y., Song J. Application of Homograft Valved Conduit in Cardiac Surgery. Front Cardiovasc Med. 2021;8:740871. https://doi.org/10.3389/fcvm.2021.740871

8. Rastelli G.C., McGoon D.C., Wallace R.B. cThe Journal of Thoracic and Cardiovascular Surgery. 1969;58(4):545-552. https://doi.org/10.1016/s0022-5223(19)42568-3

9. Javadpour H., Veerasingam D., Wood A.E. Calcification of homograft valves in the pulmonary circulation – is it device or donation related?, European Journal of Cardio-Thoracic Surgery. 2002;22(1):78-81. https://doi.org/10.1016/S1010-7940(02)00245-2

10. Salem A.M. Right ventricle to pulmonary artery connection: Evolution and current alternatives. Journal of the Egyptian Society of CardioThoracic Surgery. 2016;24(1):47-57. https://doi.org/10.1016/j.jescts.2016.04.009.

11. Bockeria L.A., Svanidze O., Kim A. et al. Total cavopulmonary connection with a new bioabsorbable vascular graft: First clinical experience. J Thorac Cardiovasc Surg. 2017;153(6):1542-1550. https://doi.org/10.1016/j.jtcvs.2016.11.071

12. Reid J.A., Callanan A.. Hybrid cardiovascular sourced extracellular matrix scaffolds as possible platforms for vascular tissue engineering. J Biomed Mater Res B Appl Biomater. 2020;108(3):910- 924. https://doi.org/10.1002/jbm.b.34444

13. Tailuo Liu, Ying Hao, Zixuan Zhang, Hao Zhou, Shiqin Peng, Dingyi Zhang, Ka Li, Yuwen Chen and Mao Chen. Advanced Cardiac Patches for the Treatment of Myocardial Infarction. Circulation. 2024;145(25):2002-2020. https://doi.org/10.1161/CIRCULATIONAHA.123.067097

14. Ciolacu D.E., Nicu R., Ciolacu F. Natural Polymers in Heart Valve Tissue Engineering: Strategies, Advances and Challenges. Biomedicines. 2022;10(5):1095. https://doi.org/10.3390/biomedicines10051095

15. Tarantini G., Sathananthan J., Fabris T, et al. Transcatheter Aortic Valve Replacement in Failed Transcatheter Bioprosthetic Valves. JACC Cardiovasc Interv. 2022;15(18):1777-1793. https://doi.org/https://doi.org/10.1016/j.jcin.2022.07.035

16. Qian T., Yuan H., Chen C., et al. Conduits for Right Ventricular Outflow Tract Reconstruction in Infants and Young Children. Front Surg. 2021;8:719840. https://doi.org/10.3389/fsurg.2021.719840

17. Hao S., Zou M., Cao F., et al. Medium-term outcomes of bovine jugular valved conduits for right ventricular outflow tract reconstruction in children: a retrospective cohort study from China. Transl Pediatr. 2023;12(10):1842-1852. https://doi.org/10.21037/tp-23-287

18. Dong W., Chen D., Jiang Q., Hu R., Qiu L., Zhu H., Zhang W., Zhang H. Ross Procedure in the era of Handmade-Valved Conduits for Right Ventricular Outflow Tract Reconstruction in Children: ShortTerm Surgical Outcomes. Front Cardiovasc Med. 2022;9:924253. https://doi.org/10.3389/fcvm.2022.924253

19. Schneider A.W., Hazekamp M.G., Versteegh M.I.M., de Weger A., Holman E.R., Klautz R.J.M., et al. Reinterventions after freestyle stentless aortic valve replacement: an assessment of procedural risks. Eur J Cardiothorac Surg 2019;56:1117-23. https://doi.org/10.1093/ejcts/ezz222

20. Gupta B., Dodge-Khatami A., Fraser C.D. Jr., et al. Systemic Semilunar Valve Replacement in Pediatric Patients Using a Porcine, Full-Root Bioprosthesis. Ann Thorac Surg. 2015;100(2):599-605. https://doi.org/10.1016/j.athoracsur.2015.03.120

21. Burghuber C.K., Konzett S., Eilenberg W., et al. Novel prefabricated bovine pericardial grafts as alternate conduit for septic aortoiliac reconstruction. J Vasc Surg. 2021;73(6):2123-2131.e2. https://doi.org/10.1016/j.jvs.2020.11.028

22. Nichay NR, Kulyabin YuYu, Zhuravleva IYu, Gorbatykh YuN, Zubritskiy AV, Voitov AV, Soynov IA, Gorbatykh AV, BogachevProkophiev AV, Karaskov AM. Right-sided xenografts in children: analysis of dysfunction. Russ. Jour. Card. and Cardiovasc. Surg.= Kard. i serd.-sosud. khir. 2019;12(3):173-182. (In Russ.) https://doi.org/10.17116/kardio201912031173

23. Crago M., Winlaw D.S., Farajikhah S., Dehghani F., Naficy S. Pediatric pulmonary valve replacements: Clinical challenges and emerging technologies. Bioeng Transl Med. 2023; 8(4):e10501. https://doi.org/10.1002/btm2.10501

24. Brown John W. Polytetrafluoroethylene valved conduits for right ventricle–pulmonary artery reconstruction: Do they outperform xenografts and allografts? The Journal of Thoracic and Cardiovascular Surgery. 2018; 155(6):2577-2578. https://doi.org/10.1016/j.jtcvs.2018.01.019

25. Yuan H., Lu T., Wu Z., Yang Y., Chen J., Wu Q., Wu S., Zhang H., Qian T., Huang C. Decellularized bovine jugular vein and hand-sewn ePTFE valved conduit for right ventricular outflow tract reconstruction in children undergoing Ross procedure. Front Cardiovasc Med. 2022;9:956301. https://doi.org/10.3389/fcvm.2022.956301

26. Costa, F. D. A. da. (2020). Conduits for Right Ventricular Outflow Tract Reconstruction in Children: Are We Improving? World Journal for Pediatric and Congenital Heart Surgery. 2020;11(2),148-149. https://doi.org/10.1177/2150135119892935

27. Sinha D., Nagy-Mehesz A., Simionescu D., Mayer J. E., Jr, & Vyavahare N. Pentagalloyl glucose-stabilized decellularized bovine jugular vein valved conduits as pulmonary conduit replacement. Acta biomaterialia. 2023; 170:97–110. https://doi.org/10.1016/j.actbio.2023.08.036

28. Nichay NR, Gorbatykh YuN, Voitov AV, et al. Infective endocarditis in pediatric patients with pulmonary graft. Russian Journal of Cardiology and Cardiovascular Surgery. 2024;17(2):139-151. (In Russ.) https://doi.org/10.17116/kardio202417021139

29. Konsek H., Sherard C., Bisbee C., Kang L., Turek J.W., Rajab T.K. Growing Heart Valve Implants for Children. J Cardiovasc Dev Dis. 2023;10(4):148. https://doi.org/10.3390/jcdd10040148

30. Zhang X., Puehler T., Seiler J., Gorb S.N., Sathananthan J., Sellers S., Haneya A., Hansen J.H., Uebing A., Müller O.J., Frank D., Lutter G. Tissue Engineered Transcatheter Pulmonary Valved Stent Implantation: Current State and Future Prospect. Int J Mol Sci. 2022;23(2):723. https://doi.org/10.3390/ijms23020723

31. Matsuzaki Y., John K., Shoji T., Shinoka T. The Evolution of Tissue Engineered Vascular Graft Technologies: From Preclinical Trials to Advancing Patient Care. Applied Sciences. 2019; 9(7):1274. https://doi.org/10.3390/app9071274

32. Chester A.H., Grande-Allen K.J. Which Biological Properties of Heart Valves Are Relevant to Tissue Engineering? Front Cardiovasc Med. 2020;7:63. https://doi.org/10.3389/fcvm.2020.00063

33. Soynov I.A., Zhuravleva I.Y., Kulyabin Y.Y., Nichay N.R., Timchenko T.P., Zubritskiy A.V., Bogachev-Prokophiev A.V., Karaskov. Tissue A.M. Engineering in Cardiovascular Surgery: Evolution and Contemporary Condition of the Problem. Journal of experimental and clinical surgery 2019; 12:(1):71-80. (In Russ.) https://doi.org/10.18499/2070-478X-2019-12-1-71-80

34. Bockeria L., Carrel T., Lemaire A., Makarenko V., Kim A., Shatalov K., Cox M., Svanidze O. Total cavopulmonary connection with a new restorative vascular graft: results at 2 years. J Thorac Dis. 2020;12(8):4168-4173. https://doi.org/10.21037/jtd-19-739

35. Prodan Z., Mroczek T., Sivalingam S. et al. Initial Clinical Trial of a Novel Pulmonary Valved Conduit. Semin Thorac Cardiovasc Surg. 2022;34(3):985-991. https://doi.org/10.1053/j.semtcvs.2021.03.036

36. Morales D.L., Herrington C., Bacha E.A., Morell V.O., Prodán Z., Mroczek T., Sivalingam S., Cox M., Bennink G., Asch F.M. A Novel Restorative Pulmonary Valve Conduit: Early Outcomes of Two Clinical Trials. Front Cardiovasc Med. 2021;7:583360. https://doi.org/10.3389/fcvm.2020.583360


Review

For citations:


Amansakhatova E.N., Nichay N.R., Kulyabin Yu., Magbulova S.A., Soynov I.A. Modern problems of valvular conduits in children with cardiovascular diseases. Eurasian heart journal. 2025;(3):78-84. (In Russ.) https://doi.org/10.38109/2225-1685-2025-3-78-84

Views: 7


ISSN 2225-1685 (Print)
ISSN 2305-0748 (Online)