Артериальная гипертония при сердечно-сосудисто-почечном метаболическом синдроме: новые цели и испытанные подходы к лечению
https://doi.org/10.38109/2225-1685-2025-2-36-43
Аннотация
Статья посвящена проблемам лечения артериальной гипертонии (АГ) у пациентов с сердечно-сосудисто-почечным метаболическим синдромом (ССПМС). Рассматриваются патофизиологические звенья развития АГ у пациентов с ССПМС. Приводятся доказательные данные, подтверждающие важную роль метаболических факторов риска в развитии осложнений сердечно-сосудистых заболеваний (ССЗ). Среди таких факторов выделяют абдоминальное ожирение, дисгликемию, атерогенную дислипидемию и АГ, которые действуют как независимые факторы риска, влияющие на функцию эндотелия, развитие атеросклероза, тромбоза, повреждения миокарда, фиброза и ремоделирование сердца. Такие факторы, в свою очередь, влияют на риск развития практически всех осложнений ССЗ, включая ишемическую болезнь сердца, цереброваскулярные заболевания, заболевания периферических артерий, аритмии и сердечную недостаточность. Обсуждается обоснованность более раннего начала антигипертензивной терапии у пациентов ССПМС как для снижения риска развития осложнений ССЗ, так и профилактики прогрессирования хронической болезни почек. Приводятся научные данные, которые служат основанием для выбора оптимальной антигипертензивной терапии при ССПМС. Подробно рассматриваются доказательные основы, свидетельствующие о том, что начальная и поддерживающая терапия комбинированным препаратом, содержащим периндоприл и индапамид, положительно влияет на функцию микрососудов у пациентов с АГ и снижает выраженность поражения органов-мишеней при ССПМС Подчеркивается необходимость гибкого подхода к выбору доз такого препарата для обеспечения как эффективности, так и безопасности терапии, особенно в так называемых уязвимых группах пациентов с АГ.
Ключевые слова
Об авторе
С. Р. ГиляревскийРоссия
Гиляревский Сергей Руджерович, д.м.н., профессор, ведущий научный сотрудник
129226, Москва, ул. 1-я Леонова, д. 16.
Список литературы
1. IHME, Global Burden of Disease (2024). Death rate from obesity. Available at: https://ourworldindata.org/obesity.
2. Ndumele C.E., Neeland I.J., Tuttle K.R., et al.; American Heart Association. A Synopsis of the Evidence for the Science and Clinical Management of Cardiovascular-Kidney-Metabolic (CKM) Syndrome: A Scientific Statement From the American Heart Association. Circulation. 2023;148(20):1636-1664. https://doi.org/10.1161/CIR.0000000000001186
3. Rana M.N., Neeland I.J. Adipose Tissue Inflammation and Cardiovascular Disease: An Update. Curr Diab Rep. 2022;22(1):27—37. https://doi.org/10.1007/s11892-021-01446-9.
4. Despres J.P., Carpentier A.C., Tchernof A., et al. Management of obesity in cardiovascular practice: JACC focus seminar. J Am Coll Cardiol.2021;78:513-531. https://doi.org/10.1016/j.jacc.2021.05.035
5. Neeland I.J., Ross R., Després J.P., Matsuzawa Y., et al.; International Atherosclerosis Society; International Chair on Cardiometabolic Risk Working Group on Visceral Obesity. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019;7(9):715-725. https://doi.org/10.1016/S2213-8587(19)30084-1
6. Rinella M.E., Lazarus J.V., Ratziu V., et al.; NAFLD Nomenclature consensus group. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology. 2023;78(6):1966 1986. https://doi.org/10.1097/HEP.0000000000000520
7. Wong R.J., Singal A.K. Trends in liver disease etiology among adults awaiting liver transplantation in the United States, 2014-2019. JAMA Netw Open. 2020;3:e1920294. https://doi.org/10.1001/jamanetworkopen.2019.20294
8. Yano Y., Vongpatanasin W., Ayers C., et al. Regional Fat Distribution and Blood Pressure Level and Variability: The Dallas Heart Study. Hypertension. 2016;68(3):576-583. https://doi.org/10.1161/HYPERTENSIONAHA.116.07876
9. Sheng X., Qiu C., Liu H., et al. Systematic integrated analysis of genetic and epigenetic variation in diabetic kidney disease. Proc Natl Acad Sci U S A. 2020;117(46):29013-29024. https://doi.org/10.1073/pnas.2005905117
10. Wilson P.W., D'Agostino R.B., Parise H., et al. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. 2005;112(20):3066-3072. https://doi.org/10.1161/CIRCULATIONAHA.105.539528
11. Ndumele C.E., Rangaswami J., Chow S.L., et al.; American Heart Association. Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory From the American Heart Association. Circulation. 2023;148(20):1606-1635. https://doi.org/10.1161/CIR.0000000000001184. Epub 2023 Oct 9. Erratum in: Circulation. 2024 Mar 26;149(13):e1023. https://doi.org/10.1161/CIR.0000000000001241
12. McEvoy J.W., McCarthy C.P., Bruno R.M., et al.; ESC Scientific Document Group. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension. Eur Heart J. 2024;45(38):3912-4018. https://doi.org/10.1093/eurheartj/ehae178
13. Owen J.G., Reisin E. Anti-hypertensive drug treatment of patients with and the metabolic syndrome and obesity: a review of evidence, meta-analysis, post hoc and guidelines publications. Curr Hypertens Rep. 2015;17(6):558. https://doi.org/10.1007/s11906-015-0558-9
14. Landsberg L., Aronne L.J., Beilin L.J., et al. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment--a position paper of the The Obesity Society and The American Society of Hypertension. Obesity (Silver Spring). 2013;21(1):8–24. https://doi.org/10.1002/oby.20181
15. Hall J.E., do Carmo J.M., da Silva A.A., et al. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116(6):991-1006. https://doi.org/10.1161/CIRCRESAHA.116.305697
16. Thethi T., Kamiyama M., Kobori H. The link between the renin angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome. Curr Hypertens Rep. 2012;14(2):160—169. https://doi.org/10.1007/s11906-012-0245-z.
17. Shariq O.A., McKenzie T.J. Obesity-related hypertension: a review of pathophysiology, management, and the role of metabolic surgery. Gland Surg. 2020;9(1):80-93. https://doi.org/10.21037/gs.2019.12.03
18. Jiang S.Z., Lu W., Zong X.F., et al. Obesity and hypertension. Exp Ther Med. 2016;12(4):2395-2399. https://doi.org/10.3892/etm.2016.3667
19. Jahandideh F., Wu J. Perspectives on the Potential Benefits of Antihypertensive Peptides towards Metabolic Syndrome. Int J Mol Sci. 2020;21(6):2192. https://doi.org/10.3390/ijms21062192
20. da Silva A.A., do Carmo J.M., Li X., et al. Role of Hyperinsulinemia and Insulin Resistance in Hypertension: Metabolic Syndrome Revisited. Can J Cardiol. 2020;36(5):671-682. https://doi.org/10.1016/j.cjca.2020.02.066
21. Cabandugama P.K., Gardner M.J., Sowers J.R. The Renin Angiotensin Aldosterone System in Obesity and Hypertension: Roles in the Cardiorenal Metabolic Syndrome. Med Clin North Am. 2017;101(1):129-137. https://doi.org/10.1016/j.mcna.2016.08.009
22. DeMarco V.G., Aroor A.R., Sowers J.R. The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol. 2014;10(6):364-376. 2014 Apr 15. PMID: 24732974; PMCID: PMC4308954. https://doi.org/10.1038/nrendo.2014.44
23. Massiéra F., Bloch-Faure M., Ceiler D., et al. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J. 2001 Dec;15(14):2727-2729. https://doi.org/10.1096/fj.01-0457fje
24. Yasue S., Masuzaki H., Okada S., et al. Adipose tissue-specific regulation of angiotensinogen in obese humans and mice: impact of nutritional status and adipocyte hypertrophy. Am J Hypertens. 2010;23(4):425-431. https://doi.org/10.1038/ajh.2009.263
25. Ehrhart-Bornstein M., Lamounier-Zepter V., Schraven A., et al. Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci U S A. 2003;100(24):14211-14216. https://doi.org/10.1073/pnas.2336140100
26. Briones A.M., Nguyen Dinh Cat A., Callera G.E., et al. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension. 2012;59(5):1069-1078. https://doi.org/10.1161/HYPERTENSIONAHA.111.190223
27. Hall J.E., do Carmo J.M., da Silva A.A., et al. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol. 2019;15(6):367-385. https://doi.org/10.1038/s41581-019-0145-4
28. Grassi G., Seravalle G., Dell'Oro R., et al.; CROSS Study. Comparative effects of candesartan and hydrochlorothiazide on blood pressure, insulin sensitivity, and sympathetic drive in obese hypertensive individuals: results of the CROSS study. J Hypertens. 2003;21(9):1761 1769. https://doi.org/10.1097/00004872-200309000-00027
29. Dorresteijn J.A., Schrover I.M., Visseren F.L et al. Differential effects of renin-angiotensin-aldosterone system inhibition, sympathoinhibition and diuretic therapy on endothelial function and blood pressure in obesity-related hypertension: a double-blind, placebo-controlled cross-over trial. J Hypertens. 2013;31(2):393 403. https://doi.org/10.1097/HJH.0b013e32835b6c02
30. Yao B., Hu G., Li Y., et al. The effect of perindopril in treatment of early diabetic nephropathy with normal blood pressure and microalbuminuria. Zhonghua Nei Ke Za Zhi. 2001;40(12):826-828. PMID: 16206673
31. Kopf D., Schmitz H., Beyer J, et al. A double-blind trial of perindopril and nitrendipine in incipient diabetic nephropathy. Diabetes Nutr Metab. 2001;14(5):245-252. PMID: 11806464
32. Brenner B.M., Cooper M.E., de Zeeuw D., et al.; RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861-869. https://doi.org/10.1056/NEJMoa011161
33. Heerspink H.J., Ninomiya T., Perkovic V., et al.; ADVANCE Collaborative Group. Effects of a fixed combination of perindopril and indapamide in patients with type 2 diabetes and chronic kidney disease. Eur Heart J. 2010;31(23):2888-2896. https://doi.org/10.1093/eurheartj/ehq139
34. Wang N., Chalmers J., Harris K., et al. Combination blood pressure lowering therapy in patients with type 2 diabetes: messages from the ADVANCE trial. J Hypertens. 2024;42(12):2055-2064. https://doi.org/10.1097/HJH.0000000000003855
35. Devesa A., Fuster V., García-Lunar I., et al. Coronary Microvascular Function in Asymptomatic Middle-Aged Individuals With Cardiometabolic Risk Factors. JACC Cardiovasc Imaging. 2025;18(1):48-58. https://doi.org/10.1016/j.jcmg.2024.08.002
36. Sakamoto N., Iwaya S., Owada T., et al. A reduction of coronary flow reserve is associated with chronic kidney disease and long term cardio-cerebrovascular events in patients with non-obstructive coronary artery disease and vasospasm. Fukushima J Med Sci. 2012;58(2):136-143. https://doi.org/10.5387/fms.58.136
37. Chade A.R., Brosh D., Higano S.T., et al. Mild renal insufficiency is associated with reduced coronary flow in patients with non obstructive coronary artery disease. Kidney Int. 2006;69(2):266 271. https://doi.org/10.1038/sj.ki.5000031
38. Charytan D.M., Skali H., Shah N.R., et al. Coronary flow reserve is predictive of the risk of cardiovascular death regardless of chronic kidney disease stage. Kidney Int. 2018;93(2):501-509. https://doi.org/10.1016/j.kint.2017.07.025
39. Nakanishi K., Fukuda S., Shimada K., et al. Prognostic value of coronary flow reserve on long-term cardiovascular outcomes in patients with chronic kidney disease. Am J Cardiol. 2013;112(7):928 932. https://doi.org/10.1016/j.amjcard.2013.05.0250.
40. Meariman J.K., Zulli H., Perez A., et al. Small vessel disease: Connections between the kidney and the heart. Am Heart J Plus. 2023;26:100257. https://doi.org/10.1016/j.ahjo.2023.100257
41. Durante A., Mazzapicchi A., Baiardo Redaelli M. Systemic and Cardiac Microvascular Dysfunction in Hypertension. Int J Mol Sci. 2024;25(24):13294. https://doi.org/10.3390/ijms252413294
42. Kunadian V., Chieffo A., Camici P.G., et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur Heart J. 2020;41(37):3504-3520. https://doi.org/10.1093/eurheartj/ehaa503
43. Zheng Y., Zhang Y., Chen D., et al. Prognostic Value of Coronary Angiography-Derived Index of Microcirculatory Resistance in Patients With Intermediate Coronary Stenosis. JACC Cardiovasc Interv. 2025;18(2):171-183. https://doi.org/10.1016/j.jcin.2024.10.017
44. Brush J.E .Jr, Cannon R.O. 3rd, Schenke W.H., et al. Angina due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy. N Engl J Med. 1988;319(20):1302 1307. https://doi.org/10.1056/NEJM198811173192002
45. Tsujita K., Yamanaga K., Komura N., et al. Impact of left ventricular hypertrophy on impaired coronary microvascular dysfunction. Int J Cardiol. 2015;187:411-413. https://doi.org/10.1016/j.ijcard.2015.03.367
46. Zhou W., Brown J.M., Bajaj N.S., et al. Hypertensive coronary microvascular dysfunction: a subclinical marker of end organ damage and heart failure. Eur Heart J. 2020;41(25):2366-2375. https://doi.org/10.1093/eurheartj/ehaa191
47. Neglia D., Fommei E., Varela-Carver A., et al. Perindopril and indapamide reverse coronary microvascular remodelling and improve flow in arterial hypertension. J Hypertens. 2011;29(2):364 372. https://doi.org/10.1097/HJH.0b013e328340a08e
48. Farsang C., Dézsi C.A., Brzozowska-Villatte R., et al. Beneficial Effects of a Perindopril/Indapamide Single-Pill Combination in Hypertensive Patients with Diabetes and/or Obesity or Metabolic Syndrome: A Post Hoc Pooled Analysis of Four Observational Studies. Adv Ther. 2021;38(4):1776-1790. https://doi.org/10.1007/s12325-021-01619-8
49. Chalmers J., Mourad J.J., Brzozowska-Villatte R., et al. Benefit of treatment based on indapamide mostly combined with perindopril on mortality and cardiovascular outcomes: a pooled analysis of four trials. J Hypertens. 2023;41(3):508-515. https://doi.org/10.1097/HJH.0000000000003368
Рецензия
Для цитирования:
Гиляревский С.Р. Артериальная гипертония при сердечно-сосудисто-почечном метаболическом синдроме: новые цели и испытанные подходы к лечению. Евразийский Кардиологический Журнал. 2025;(2):36-43. https://doi.org/10.38109/2225-1685-2025-2-36-43
For citation:
Gilyarevsky S.R. Arterial Hypertension in Cardio-Renal-Metabolic Syndrome: New Targets and Proven Treatment Approaches. Eurasian heart journal. 2025;(2):36-43. (In Russ.) https://doi.org/10.38109/2225-1685-2025-2-36-43