Preview

Eurasian heart journal

Advanced search

Epigenetic drugs: a new frontier in the treatment of heart failure

https://doi.org/10.38109/2225-1685-2023-4-76-82

Abstract

Uncovering the secrets of genome flexibility not only contributed to the development of research in this area, but also served as an impetus for the development of new treatments for human diseases. A better understanding of the biology of chromatin (DNA/histone complexes) and non-coding RNAs (ncRNAs) has enabled the development of epigenetic (epi) preparations capable of modulating transcriptional programs associated with cardiovascular disease. This is especially true in heart failure, where epigenetic mechanisms have been shown to underlie the development of several pathological processes such as left ventricular hypertrophy, fibrosis, cardiomyocyte apoptosis, and microvascular dysfunction. Targeting epigenetic signals may represent a promising approach, especially in patients with heart failure with preserved ejection fraction (HFpEF), where the prognosis remains poor and effective treatments are not yet available. Under these conditions, epigenetics can be used to develop individualized therapeutic approaches, paving the way for personalized medicine. Although the beneficial effects of epi-drugs are gaining more attention, the number of epigenetic compounds used in clinical practice remains low, suggesting the need to develop more selective epi-drugs. In this review, we present a list of new promising epi-drugs for the treatment of cardiovascular diseases, with a focus mainly on HFpEF. The therapeutic effect of these drugs is due to the impact on at least one of the three main epigenetic mechanisms: DNA methylation, histone modification, and non-coding RNA.

About the Authors

K. A. Aitbaev
Research Institute of Molecular Biology and Medicine
Kyrgyzstan

Kubanych A. Aitbaev, Dr. of Sci. (Med.), Professor, Head of the Department of pathological physiology

3 Togolok Moldo street, Bishkek 720040



I. T. Murkamilov
I.K. Akhunbaev Kyrgyz State Medical Academy; Kyrgyz Russian Slavic University
Kyrgyzstan

Ilkhom T. Murkamilov, Dr. of Sci. (Med.), Associate Professor, the Department of Faculty Therapy

92 Akhunbaev Street, Bishkek 720020, Kyrgyzstan

44 Kyiv Street, Bishkek 720000



Zh. A. Murkamilova
Kyrgyz Russian Slavic University
Kyrgyzstan

Zhamila A. Murkamilova, graduate student

44 Kyiv Street, Bishkek 720000



V. V. Fomin
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Viktor V. Fomin, Dr. of Sci. (Med.), Professor, Corresponding Member of RAS, Vice-Rector for Research and Clinical Work

8 Trubetskaya street, building 2, Moscow 119048



I. O. Kudaibergenova
I.K. Akhunbaev Kyrgyz State Medical Academy
Kyrgyzstan

Indira O. Kudaibergenova, Dr. of Sci. (Med.), Professor, Rector

92 Akhunbaev Street, Bishkek 720020, Kyrgyzstan



T. F. Yusupova
Osh State University
Kyrgyzstan

Tursunoy F. Yusupova, 5th year student, Faculty of Medicine

331 Lenin street, Osh city 723500



F. A. Yusupov
Osh State University
Kyrgyzstan

Furkat A. Yusupov, Dr. of Sci. (Med.), Professor, Head of Department of Neurology, Neurosurgery and Psychiatry

331 Lenin street, Osh city 723500



References

1. Weinhold B. Epigenetics: the science of change. Environ Health Perspect. 2006;114:A160–7. https://doi.org/10.1289/ehp.114-a160

2. Rozek LS, Dolinoy DC, Sartor MA, Omenn GS. Epigenetics: relevance and implications for public health. Annu Rev Public Health. 2014;35:105– 22. https://doi.org/10.1146/annurev-publhealth-032013-182513

3. Maunakea AK, Nagarajan RP, Bilenky M et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466:253–7. https://doi.org/10.1038/nature09165

4. Mohammed SA, Ambrosini S, Lüscher T et al. Epigenetic control of mitochondrial function in the vasculature. Front Cardiovasc Med. 2020;7:28. https://doi.org/10.3389/fcvm.2020.00028

5. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123:2145–56. https://doi.org/10.1161/CIRCULATIONAHA.110.956839

6. Gao J, Shao K, Chen X et al. The involvement of post-translational modifications in cardiovascular pathologies: focus on SUMOylation, neddylation, succinylation, and prenylation. J Mol Cell Cardiol. 2020;138:49–58. https://doi.org/10.1016/j.yjmcc.2019.11.146

7. Das S, Shah R, Dimmeler S et al. Noncoding RNAs in cardiovascular disease: current knowledge, tools and technologies for investigation, and future directions: a scientific statement from the American heart association. Circ Genom Precis Med. 2020;13:e000062. https://doi.org/10.1161/HCG.0000000000000062

8. Zhong J, Agha G, Baccarelli AA. The role of DNA methylation in cardiovascular risk and disease. Circ Res. 2016;118:119–31. https://doi.org/10.1161/CIRCRESAHA.115.305206

9. Aggarwal R, Jha M, Shrivastava A, Jha AK. Natural compounds: role in reversal of epigenetic changes. Biochemistry. 2015;80:972–89. https://doi.org/10.1134/S0006297915080027

10. Ganesan A, Arimondo PB, Rots MG et al. The timeline of epigenetic drug discovery: from reality to dreams. Clin Epigenet. 2019;11:174. https://doi.org/10.1186/s13148-019-0776-0

11. Savarese G, Becher PM, Lund LH et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023 Jan 18;118(17):3272-3287. https://doi.org/10.1093/cvr/cvac013

12. Redfield MM, Borlaug BA. Heart Failure With Preserved Ejection Fraction: A Review. JAMA. 2023 Mar 14;329(10):827-838. https://doi.org/10.1001/jama.2023.2020

13. Skinner MK. Role of epigenetics in developmental biology and transgenerational inheritance. Birth Defects Res C Embryo Today. 2011;93:51–5. https://doi.org/10.1002/bdrc.20199

14. From AM, Leibson CL, Bursi F et al. Diabetes in heart failure: prevalence and impact on outcome in the population. Am J Med. 2006;119:591–9. https://doi.org/10.1016/j.amjmed.2006.05.024

15. Liu CF, Tang WHW. Epigenetics in cardiac hypertrophy and heart failure. Basic Transl Sci. 2019;4:976–93. https://doi.org/10.1016/j.jacbts.2019.05.011

16. Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol. 2011;30:30–41. https://doi.org/10.1038/nrcardio.2010.165

17. Rich MW. Heart failure in the 21st century: a cardiogeriatric syndrome. J Gerontol A Biol Sci Med Sci. 2001;56:M88–96. https://doi.org/10.1093/gerona/56.2.M88

18. Backs J, Olson EN. Control of cardiac growth by histone acetylation/ deacetylation. Circ Res. 2006;98:15–24. https://doi.org/10.1161/01.RES.0000197782.21444.8f

19. Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target? Circulation. 2004; 109:1580–9. doi:10.1161/01.CIR.0000120390.68287.BB

20. Hill JA, Olson EN, Biology M-L. Mechanisms of disease cardiac plasticity. N Engl J Med. 2008;58:1370–80. https://doi.org/10.1056/NEJMra072139

21. Duygu B, de Windt LJ, da Costa Martins PA. Targeting microRNAs in heart failure. Trends Cardiovasc Med. 2016;26:99–110. https://doi.org/10.1016/j.tcm.2015.05.008

22. Ganesan A. Multitarget drugs: an epigenetic epiphany. ChemMedChem. 2016;11:1227–41. https://doi.org/10.1002/cmdc.201500394

23. Madsen A, Höppner G, Krause J et al. An important role for DNMT3amediated DNA methylation in cardiomyocyte metabolism and contractility. Circulation. 2020;142:1562–78. https://doi.org/10.1161/CIRCULATIONAHA.119.044444

24. Stenzig J, Schneeberger Y, Löser A et al. Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats. J Mol Cell Cardiol. 2018;120:53–63. https://doi.org/10.1016/j.yjmcc.2018.05.012

25. Gnyszka A, Jastrzebski Z, Flis S. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res. 2013;33:2989–96.

26. Fraineau S, Palii CG, Allan DS, Brand M. Epigenetic regulation of endothelial-cell-mediated vascular repair. FEBS J. 2015;282:1605–29. https://doi.org/10.1111/febs.13183

27. Plácido R, Heinonen IHA, Volpe M et al. Microvascular dysfunction in heart failure with preserved ejection fraction. Front Physiol. 2018;10:1347. https://doi.org/10.3389/fphys.2019.01347

28. Rajan A, Shi H, Xue B. Class I and II histone deacetylase inhibitors differentially regulate thermogenic gene expression in brown adipocytes open. Sci Rep. 2018;8:13072. https://doi.org/10.1038/s41598-018-31560-w

29. Napoli C, Benincasa G, Donatelli F, Ambrosio G. Precision medicine in distinct heart failure phenotypes: focus on clinical epigenetics. Am Heart J. 2020;224:113–28. https://doi.org/10.1016/j.ahj.2020.03.007

30. Wang Y, Miao X, Liu Y et al. Dysregulation of histone acetyltransferases and deacetylases in cardiovascular diseases. Oxid Med Cell Longev. 2014;2014:641979. https://doi.org/10.1155/2014/641979

31. Kong Y, Tannous P, Lu G et al. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation. 2006;113:2579–88. https://doi.org/10.1161/CIRCULATIONAHA.106.625467

32. Granger A, Abdullah I, Huebner F et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J. 2008;22:3549–60. https://doi.org/10.1096/fj.08-108548

33. Xie M, Kong Y, Tan W et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation. 2014;129:1139–51. https://doi.org/10.1161/CIRCULATIONAHA.113.002416

34. Kee HJ, Sohn IS, Nam KI et al. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation. 2006 Jan 3;113(1):51-59. https://doi.org/10.1161/CIRCULATIONAHA.105.559724

35. Wallner M, Eaton DM, Berretta RM et al. HDAC inhibition improves cardiopulmonary function in a feline model of diastolic dysfunction. Sci Transl Med. 2020;12:eaay7205. https://doi.org/10.1126/scitranslmed.aay7205

36. Testai L, Sestito S, Martelli A et al. Synthesis and pharmacological characterization of mitochondrial KATP channel openers with enhanced mitochondriotropic effects. Bioorgan Chem. 2021;107:104572. https://doi.org/10.1016/j.bioorg.2020.104572

37. Kelly WK, Marks P, Richon VM. CCR 20th anniversary commentary: vorinostat–gateway to epigenetic therapy. Clin Cancer Res. 2015;21:2198–200. https://doi.org/10.1158/1078-0432.CCR-14-2556

38. Ho TCS, Chan AHY, Ganesan A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J Med Chem Am Chem Soc. 2020;63:12460–84. https://doi.org/10.1021/acs.jmedchem.0c00830

39. Jeong MY, Lin YH, Wennersten SA et al. Histone deacetylase activity governs diastolic dysfunction through a nongenomic mechanism. Sci Transl Med. 2018;10:eaao0144. https://doi.org/10.1126/scitranslmed.aao0144

40. Gillette T.G. HDAC inhibition in the heart: erasing hidden fibrosis. Circulation.2021;143(19):1891-1893. https://doi.org/10.1161/CIRCULATIONAHA.121.054262

41. Travers JG, Wennersten SA, Peña B, Bagchi RA, Smith HE, Hirsch RA, McKinsey TA. HDAC inhibition reverses preexisting diastolic dysfunction and blocks covert extracellular matrix remodeling. Circulation.2021;143(19):1874-1890. https://doi.org/10.1161/CIRCULATIONAHA.120.046462

42. Mattson RH, Cramer JA, Williamson PD, Novelly RA. Valproic acid in epilepsy: clinical and pharmacological effects. Ann Neurol. 1978;3:20– 5. https://doi.org/10.1002/ana.410030105

43. Mokhtarani M, Diaz GA, Rhead W et al. Urinary phenylacetylglutamine as dosing biomarker for patients with urea cycle disorders. Mol Genet Metab. 2012;107:308–14. https://doi.org/10.1016/j.ymgme.2012.08.006

44. Tian S, Lei I, Gao W et al. HDAC inhibitor valproic acid protects heart function through Foxm1 pathway after acute myocardial infarction. EBioMedicine. 2019;39:83–94. https://doi.org/10.1016/j.ebiom.2018.12.003

45. Subramanian U, Kumar P, Mani I et al. Retinoic acid and sodium butyrate suppress the cardiac expression of hypertrophic markers and proinflammatory mediators in Npr1 gene-disrupted haplotype mice. Physiol Genomics. 2016;48:477–90. https://doi.org/10.1152/physiolgenomics.00073.2015

46. Chan-Penebre E, Kuplast KG, Majer CR et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol. 2015;11:432–7. https://doi.org/10.1038/nchembio.1810

47. Morera L, Lübbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenet. 2016;8:57. https://doi.org/10.1186/s13148-016-0223-4

48. Guo Y, Su Z-Y, Kong A-NT. Current perspectives on epigenetic modifications by dietary chemopreventive and herbal phytochemicals. Curr Pharmacol Rep. 2015;1:245–57. https://doi.org/10.1007/s40495-015-0023-0

49. Andrieu G, Belkina AC, Denis GV. Clinical trials for BET inhibitors run ahead of the science. Drug Discov Today Technol. 2016;19:45–50. https://doi.org/10.1016/j.ddtec.2016.06.004

50. Kalow W. Pharmacogenetics and pharmacogenomics: origin, status, and the hope for personalized medicine. Pharmacogenomics J. 2006;6:162–5. https://doi.org/10.1038/sj.tpj.6500361

51. Shi J, Vakoc CR. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell Cell Press. 2014;54:728–36. https://doi.org/10.1016/j.molcel.2014.05.016

52. Borck PC, Guo LW, Plutzky J. BET epigenetic reader proteins in cardiovascular transcriptional programs. Circ Res. 2020;126:1190–208. https://doi.org/10.1161/CIRCRESAHA.120.315929

53. Nicholls SJ, Ray KK, Johansson JO et al. Selective BET protein inhibition with apabetalone and cardiovascular events: a pooled analysis of trials in patients with coronary artery disease. Am J Cardiovasc Drugs. 2018;18:109–15. https://doi.org/10.1007/s40256-017-0250-3

54. Nicholls SJ, Schwartz GG, Buhr KA et al. Apabetalone and hospitalization for heart failure in patients following an acute coronary syndrome: a prespecified analysis of the BETonMACE study. Cardiovasc Diabetol. 2021;20:13. https://doi.org/10.1186/s12933-020-01199-x

55. Tsujikawa LM, Fu L, Das S et al. Apabetalone (RVX-208) reduces vascular inflammation in vitro and in CVD patients by a BET-dependent epigenetic mechanism. Clin Epigenet. 2019;11:102. https://doi.org/10.1186/s13148-019-0696-z

56. Brandts J, Ray KK. Apabetalone – BET protein inhibition in cardiovascular disease and type 2 diabetes. Future Cardiol. 2020;16:385–95. https://doi.org/10.2217/fca-2020-0017

57. Chioccioli M, Roy S, Rigby K et al. A lung targeted miR-29 mimic as a therapy for pulmonary fibrosis. bioRxiv [Preprint]. 2021. https://doi.org/10.1101/2021.12.22.473724

58. van Rooij E, Sutherland LB, Thatcher JE et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA. 2008;105:13027–32. https://doi.org/10.1073/pnas.0805038105

59. Landmesser U, Poller W, Tsimikas S et al. From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases. Eur Heart J. 2020;41:3884–99. https://doi.org/10.1093/eurheartj/ehaa229

60. Gargiulo P, Marzano F, Salvatore M, et al. MicroRNAs: diagnostic, prognostic and therapeutic role in heart failure — a review. ESC Heart Failure. 2023;10:2:753-761. https://doi.org/10.1002/ehf2.14153

61. Ruan W, Zhao F, Zhao S et al. Knockdown of long noncoding RNA MEG3 impairs VEGF-stimulated endothelial sprouting angiogenesis via modulating VEGFR2 expression in human umbilical vein endothelial cells. Gene. 2018;649:32–9. https://doi.org/10.1016/j.gene.2018.01.072

62. Leisegang MS, Fork C, Josipovic I et al. Long noncoding RNA MANTIS facilitates endothelial angiogenic function. Circulation. 2017;136:65– 79. https://doi.org/10.1161/CIRCULATIONAHA.116.026991

63. Man HSJ, Sukumar AN, Lam GC et al. Angiogenic patterning by STEEL, an endothelial-enriched long noncoding RNA. Proc Natl Acad Sci USA. 2018;115:2401–6. https://doi.org/10.1073/pnas.1715182115

64. Zhang X, Tang X, Hamblin MH, Yin K-J. Long non-coding RNA malat1 regulates angiogenesis in hindlimb ischemia. Int J Mol Sci. 2018; 19:1723. doi:10.3390/ijms19061723

65. Simion V, Haemmig S, Feinberg MW. LncRNAs in vascular biology and disease. Vasc Pharmacol. 2019;114:145–56. https://doi.org/10.1016/j.vph.2018.01.003

66. Miano JM, Zheng D, Bell RD et al. Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler Thromb Vasc Biol. 2014;34:1249–59. https://doi.org/10.1161/ATVBAHA.114.303240

67. Vance KW, Schulte C, Thum T et al. Long non-coding RNAs: at the heart of cardiac dysfunction? Front Physiol. 2019;10:30. https://doi.org/10.3389/fphys.2019.00030

68. Zhou W, Wang C, Chang J et al. RNA methylations in cardiovascular diseases, molecular structure, biological functions and regulatory roles in cardiovascular diseases. Front Pharmacol. 2021;12:722728. https://doi.org/10.3389/fphar.2021.722728

69. Qin Y, Li L, Luo E et al. Role of m6A RNA methylation in cardiovascular disease (review). Int J Mol Med. 2020;46:1958–72. https://doi.org/10.3892/ijmm.2020.4746

70. Zhang B, Xu Y, Cui X et al. Alteration of m6A RNA methylation in heart failure with preserved ejection fraction. Front Cardiovasc Med. 2021;8:647806. https://doi.org/10.3389/fcvm.2021.647806

71. Cao M, Luo H, Li D et al. Research advances on circulating long noncoding RNAs as biomarkers of cardiovascular diseases. Int J Cardiol. 2022;353:109–17. https://doi.org/10.1016/j.ijcard.2022.01.070


Review

For citations:


Aitbaev K.A., Murkamilov I.T., Murkamilova Zh.A., Fomin V.V., Kudaibergenova I.O., Yusupova T.F., Yusupov F.A. Epigenetic drugs: a new frontier in the treatment of heart failure. Eurasian heart journal. 2023;(4):76-82. (In Russ.) https://doi.org/10.38109/2225-1685-2023-4-76-82

Views: 480


ISSN 2225-1685 (Print)
ISSN 2305-0748 (Online)