Preview

Eurasian heart journal

Advanced search

MicroRNA: a clinician’s view of the state of the problem. Part 3: MicroRNA and approaches to the treatment of cardiovascular diseases

https://doi.org/10.38109/2225-1685-2023-3-82-88

Abstract

Cardiovascular diseases  are one of the most common  causes of death in both developing and developed countries of the world. Despite the improvement in primary prevention, the prevalence of cardiovascular diseases has continued to grow  in recent years. Therefore, it is extremely important both to study the  molecular  pathophysiology   of cardiovascular   diseases   in  depth  and to find new  methods  for early and appropriate prevention, diagnosis  and treatment of these diseases.  In the last decade,  a large amount of research has focused on the study of microRNAs as potential diagnostic biomarkers, as well as their role in the treatment of cardiovascular diseases. microRNAs are endogenous   small (21-23  nucleotides)  ribonucleotides  involved in the regulation  of protein synthesis  from  amino  acids  based  on matrix  RNA. microRNAs  are involved in the regulation of the expression  of the majority (>60%)  of genes encoding  proteins, mainly due to its suppression, modulate numerous  signaling  pathways and  cellular processes   and  participate in intercellular communication. Along with this, the important role of microRNAs in the cardiovascular system has been proven: participation in the regulation of processes such as angiogenesis, contractility of heart cells, control of lipid metabolism, the rate of fibrosis and atherosclerosis,  which makes it possible to use microRNAs as therapeutic agents. Thus, the article considers  the issue of the availability of several approaches  to treatment involving microRNAs: overexpression of exogenous  microRNAs to reduce the expression of genes with undesirable properties, overexpression  of microRNA inhibitors, the use of «false»  microRNAs or «sponges» that act as competitive  inhibitors. The use of viruses with a positive (semantic)  RNA chain resembling endogenous mRNAs is also considered.

The author pays special attention to the important role of microRNAs in a number of cardiovascular diseases:  microRNA-based  therapy has been demonstrated in the treatment of diseases  such as heart failure, dyslipidemia, acute coronary syndrome,  arterial hypertension,  as well as arterial hypertension caused  by OSA. Studies proving the positive effect of microRNAs on slowing down the development of atherosclerosis  are considered,  which may allow them to be used as new therapeutic agents that can lead to optimization of approaches  to the treatment of cardiovascular  diseases.  Particularly active is the development of drugs based on RNA interference  (RNAi), which  use  recently discovered pathways of endogenous  short interfering RNAs and become  universal tools for  effective  suppression  of protein  expression.   Thus,  the  use  of certain drugs  based  on RNA interference in a number of clinical studies has shown a significant decrease  in the level of non-HDL cholesterol  and triglycerides in the treatment of dyslipidemia  and NT-proBNP  in the treatment of hereditary transtyretin amyloidosis.   This  article  touches   upon  the  issue  of such  an important problem  as  myocardial  infarction. Thus, hypertrophy and fibrosis of the heart significantly contribute  to thickening and increasing  the rigidity of the ventricular walls, leading to remodeling  of the heart and worsening  the prognosis. For this purpose, a biocompatible patch with microneedles (MI) with antifibrotic activity based on microRNA can be used to prevent excessive  cardiac fibrosis after myocardial infarction. Summarizing the above, it is certainly  worth noting that this problem  has been  little studied and requires  further research. Identifying a safe and effective strategy for microRNA-based therapy remains a difficult task, but the new approaches  considered  have enormous  potential for the treatment of cardiovascular  diseases.

About the Authors

O. Iu. Mironova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Olga Iu. Mironova - Dr. of Sci. (Med.), Prof., Chair of Faculty Therapy #1, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University).

Bol. Pirogovskaya st., 6/1, Moscow 119435



M. V. Berdysheva
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Mariia  V. Berdysheva - student, I.M. Sechenov First Moscow State Medical University (Sechenov University).

Bol. Pirogovskaya st., 6/1, Moscow 119435



E. S. Deeva
A.I. Burnazyan Federal Medical Biophysical Center
Russian Federation

Ekaterina S. Deeva - resident doctor, A.I. Burnasyan Federal Medical Biophysical Center.

Gamaleyi st., 15, Moscow 123098



E. M. Elfimova
E.I. Chazov National Medical Research Center of Cardiology
Russian Federation

Eugenia M. Elfimova - Cand. of Sci. (Med.), senior research scientist of the Sleep Laboratory, Hypertension Department, E.I. Chazov National Medical  Research Centre of Cardiology.

Ac. Chazov Street, 15a, Moscow, 121552



References

1. Kennel PJ, Schulze PC. A Review on the Evolving Roles of MiRNA-Based Technologies in Diagnosing and Treating Heart Failure. Cells. 2021 Nov 16;10(11):3191. PMID: 34831414; PMCID: PMC8617680. https://doi.org/10.3390/cells10113191

2. Lima CR, Geraldo MV, Fuziwara CS, Kimura ET, Santos MF. MiRNA-146b-5p upregulates migration and invasion of different Papillary Thyroid Carcinoma cells. BMC Cancer. 2016 Feb 16;16:108. PMID: 26883911; PMCID: PMC4754828. https://doi.org/10.1186/s12885-016-2146-z

3. Li JY, Wei X, Sun Q, Zhao XQ, Zheng CY, Bai CX, Du J, Zhang Z, Zhu LG, Jia YS. MicroRNA-449b-5p promotes the progression of osteoporosis by inhibiting osteogenic differentiation of BMSCs via targeting Satb2. Eur Rev Med Pharmacol Sci. 2019 Aug;23(15):6394-6403. PMID: 31378877. https://doi.org/10.26355/eurrev_201908_18519

4. Krutzfeldt J., Rajewsky N., Brach R. et al. Silencing of microRNAs in vivo with “antagomirs”. Nature 2005;43:685-689. https://doi.org/10.1038/nature04303

5. Kurreck J. Antisense technologes. Improvement through novel chemical modifications. Eur J Biochem 2003;270:1628-1644. https://doi.org/10.1046/j.1432-1033.2003.03555.x

6. Ebert M. S., Neison J. R., Sharp P. A. McroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007;4:721726. https://doi.org/10.1038/nmeth1079

7. Krutzfeldt J., Rajewsky N., Braich R., Rajeev K. G., Tuschl T, Manoharan M. et al. Silencing of microRNAs in vivo with “antagomirs”. Nature 2005;438:685-689. https://doi.org/10.1038/nature04303

8. Kim V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005;6:376-385. https://doi.org/10.1038/nrm1644

9. Zlatev I, Castoreno A, Brown CR, Qin J, Waldron S, Schlegel MK, Degaonkar R, Shulga-Morskaya S, Xu H, Gupta S, Matsuda S, Akinc A, Rajeev KG, Manoharan M, Maier MA, Jadhav V. Reversal of siRNAmediated gene silencing in vivo. Nat Biotechnol 2018;36:509–511. https://doi.org/10.1038/nbt.4136

10. Chicago Chen, S., Huang, Y., Liu, R., Lin, Z., Huang, B., Ai, W., He, J., Gao, Y., Xie, P.»Exosomal miR-152-5p/ARHGAP6/ROCK axis regulates apoptosis and fibrosis in cardiomyocytes». Experimental and Therapeutic Medicine 25, no. 4 (2023): 165. https://doi.org/10.3892/etm.2023.11864

11. Zhang X, Gao Y, Wu H, Mao Y, Qi Y. LncRNA HOX transcript antisense RNA mitigates cardiac function injury in chronic heart failure via regulating microRNA-30a-5p to target KDM3A. J Cell Mol Med. 2022 Mar;26(5):1473-1485. Epub 2022 Jan 26. PMID: 35083842; PMCID: PMC8899154. https://doi.org/10.1111/jcmm.17160

12. Täubel J, Hauke W, Rump S, Viereck J, Batkai S, Poetzsch J, Rode L, Weigt H, Genschel C, Lorch U, Theek C, Levin AA, Bauersachs J, Solomon SD, Thum T. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J. 2021 Jan 7;42(2):178-188. PMID: 33245749; PMCID: PMC7954267. https://doi.org/10.1093/eurheartj/ehaa898

13. Foinquinos A, Batkai S, Genschel C, Viereck , Rump S, Gyöngyösi M, Traxler D, Riesenhuber M, Spannbauer A, Lukovic D, Weber N, Zlabinger K, Hašimbegović E, Winkler J, Fiedler J, Dangwal S, Fischer M, Roche J. D L, Wojciechowski D, Kraft T, Garamvölgyi R, Neitzel S, Chatterjee S, Yin X , Bär C , Mayr M , Xiao K , Thum T. Preclinical development of a miR-132 inhibitor for heart failure treatment. Nat Commun 2020;11:633. https://doi.org/10.1038/s41467-020-14349-2

14. Batkai S, Genschel C, Viereck J, Rump S, Bär C, Borchert T, Traxler D, Riesenhuber M, Spannbauer A, Lukovic D, Zlabinger K, Hašimbegović E, Winkler J, Garamvölgyi R, Neitzel S, Gyöngyösi M, Thum T. CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. Eur J Heart 2021;42:192–201. http://dx.doi.org/10.1093/eurheartj/ehaa791

15. Morgan ES, Tami Y, Hu K, Brambatti M, Mullick AE, Geary RS, et al. Antisense Inhibition of Angiotensinogen With IONIS-AGT-L(Rx): Results of Phase 1 and Phase 2 Studies. JACC Basic Transl Sci. 2021;6:485–96. https://doi.org/10.1016/j.jacbts.2021.04.004

16. Huang STJ, Casey S, Leung PM, Webb DJ, Desai AS, Cheng Y, et al. Durable Reductions in Circulating Angiotensinogen and Blood Pressure Six Months After Single Doses of ALN-AGT, an RNA Interference Therapeutic Targeting Hepatic Angiotensinogen Synthesis, in Hypertensive Patients. Circulation. 2021;144:A10974 https://doi.org/10.1161/circ.144.suppl_1.10974.

17. Salvador, V.D., Bakris, G.L. Novel antihypertensive agents for resistant hypertension: what does the future hold? Hypertens Res 45, 1918–1928 (2022). https://doi.org/10.1038/s41440-022-01025-9

18. He L, Liao X, Zhu G, Kuang J. miR-126a-3p targets HIF-1α and alleviates obstructive sleep apnea syndrome with hypertension. Hum Cell. 2020 Oct;33(4):1036-1045. Epub 2020 Aug 10. PMID: 32779153. https://doi.org/10.1007/s13577-020-00404-z

19. Bergmark BA, Marston NA, Bramson CR, Curto M, Ramos V, Jevne A, Kuder JF, Park JG, Murphy SA, Verma S, Wojakowski W, Terra SG, Sabatine MS, Wiviott SD; TRANSLATE-TIMI 70 Investigators. Effect of Vupanorsen on Non-High-Density Lipoprotein Cholesterol Levels in Statin-Treated Patients With Elevated Cholesterol: TRANSLATE-TIMI 70. Circulation. 2022 May 3;145(18):1377-1386. Epub 2022 Apr 3. PMID: 35369705; PMCID: PMC9047643. https://doi.org/10.1161/CIRCULATIONAHA.122.059266

20. P. Garcia Pavia, J.D. Gillmore, P. Kale, J.L. Berk, M.S. Maurer, I. Conceição, M. Dicarli, S. Solomon, C. Chen, S. Arum, J. Vest, M. Grogan, C. Hababou, HELIOS-A: 18-month exploratory cardiac results from the phase 3 study of vutrisiran in patients with hereditary transthyretin-mediated amyloidosis, ISSN 1878-6480, https://doi.org/10.1093/eurheartjsupp/suac121.654

21. Yuan J, Yang H, Liu C, Shao L, Zhang H, Lu K, Wang J, Wang Y, Yu Q, Zhang Y, Yu Y, Shen Z. Microneedle Patch Loaded with Exosomes Containing MicroRNA-29b Prevents Cardiac Fibrosis after Myocardial Infarction. Adv Healthc Mater. 2023 Feb 5:e2202959. Epub ahead of print. PMID: 36739582. https://doi.org/10.1002/adhm.202202959


Review

For citations:


Mironova O.I., Berdysheva M.V., Deeva E.S., Elfimova E.M. MicroRNA: a clinician’s view of the state of the problem. Part 3: MicroRNA and approaches to the treatment of cardiovascular diseases. Eurasian heart journal. 2023;(3):82-88. (In Russ.) https://doi.org/10.38109/2225-1685-2023-3-82-88

Views: 455


ISSN 2225-1685 (Print)
ISSN 2305-0748 (Online)