Preview

Евразийский кардиологический журнал

Расширенный поиск

МЕТАБОЛОМНЫЕ ПОДХОДЫ В ИЗУЧЕНИИ СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЙ

https://doi.org/10.38109/2225-1685-2021-1-106-117

Полный текст:

Аннотация

Современные научные достижения дают клиницистам преимущество в использовании дополнительных инструментов и методов оказания помощи в клинической оценке и расширения их возможностей для классификации пациентов по факторам риска сердечно-сосудистых осложнений. Биомаркеры – это простой инструмент, позволяющий идентифицировать и классифицировать людей с различной степенью риска, быстро и точно диагностировать состояние болезни, эффективно прогнозировать и контролировать лечение. Следовательно, изучение биомаркеров является серьезным и перспективным подходом к пониманию и лечению ССЗ. Среди них особое место занимают генетические и биохимические маркеры. Кардио-метаболомика является новой наукой, которая позволяет исследователям изучать изменения в метаболоме и метаболических сетях, при заболеваниях сердечнососудистой системы, чтобы лучше понять их патофизиологический механизм. Таким образом, изучение метаболома может дать важную информацию о патогенезе сердечно-сосудистых заболеваний, а также предложить возможность выявления новых биомаркеров ССЗ.

Об авторах

А. А. Абдуллаев
Центр Передовых Технологий при Министерстве инновационного развития Республики
Узбекистан

заместитель директора, доктор биологических наук

ул. Талабалар Шахарчаси, 3а. 100174, г. Ташкент

100000, Ташкент. Мирзо-улугбековский район, ул. Исмоилий, 2-23



Г. Ж. Абдуллаева
Республиканский специализированный научно-практический медицинский центр кардиологии при Министерстве здравоохранения Республики Узбекистан
Узбекистан

ведущий научный сотрудник, доктор медицинских наук, лаборатория артериальной гипертонии

ул. Осие 4, 100052, г. Ташкент



Х. Ф. Юсупова
Республиканский специализированный научно-практический медицинский центр кардиологии при Министерстве здравоохранения Республики Узбекистан
Узбекистан

младший научный сотрудник, лаборатория артериальной гипертонии

ул. Осие 4, 100052, г. Ташкент



Список литературы

1. World Health Organization. 2020. https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1

2. Panju A.A., Hemmelgarn B.R., Guyatt G.H. et al. Is this patient having a myocardial infarction? JAMA. 1996; 280 (14): 1256–1263.

3. Pope J.H., Aufderheide T.P., Ruthazer R. et al. Missed diagnoses of acute cardiac ischemia in the emergency department. N. Engl. J. Med. 2000; 342 (16): 1163–1170.

4. Naghavi M., Libby P., Falk E. et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation. 2003; 108 (15): 1772–1778.

5. Wishart D.S., Feunang Y.D., Marcu A. et al. HMDB 4.0 — The Human Metabolome Database for 2018. Nucleic Acids Res. 2018. Jan 4; 46(D1): D 608-17. 29140435.

6. Ellis D. I., Dunn W. B., Griffin J. L. et al. “Metabolic fingerprinting as a diagnostic tool”. Pharmacogenomics. 2007; vol. 8, № 9: 1243–1266.

7. Tweeddale H., Notley-McRobb L., Ferenci T. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool («metabolome») analysis. J. Bacteriol. 1998; 180(19):5109-16.

8. Sabatine M.S., Liu E., Morrow D.A. et al. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation. 2005; 112: 3868–3875. doi: 10.1161/CIRCULATIONAHA.105.569137.

9. Griffin J. L., Atherton H., Shockcor J. et al. “Metabolomics as a tool for cardiac research”. Nature Reviews Cardiology. 2011; vol. 8, no. 11: 630–643.

10. Wishart D.S., Jewison T, Guo A.C. et al. HMDB 3.0–the human metabolome database in 2013. Nucleic Acids Res. 2013; 41: 801–807.

11. Cheng S., Shah S.H., Corwin E.J., et al. Potential impact and study considerations of metabolomics in cardiovascular health and disease: a scientific statement from the American Heart Association. Circ. Cardiovasc. Genet. 2017; 10: e000032.

12. Allard M.F., Schönekess B.O., Henning S.L. et al. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am. J. Physiol. 1994; 267: 742–750.

13. Burelle Y., Wambolt R.B., Grist M. et al. Regular exercise is associated with a protective metabolic phenotype inthe rat heart. Am J Physiol Heart Circ Physiol. 2004; 287: 1055–1063.

14. Lai L., Leone T.C., Keller M.P. et al. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ. Heart Fail. 2014; 7: 1022–1031.

15. Kato T., Niizuma S., Inuzuka Y. et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ. Heart Fail. 2010; 3: 420–430.

16. Meerson F.Z., Spiritchev V.B., Pshennikova M.G. et al. The role of the pentose-phosphate pathway in adjustment of the heart to ahigh load and the development of myocardial hypertrophy. Experientia. 1967; 23: 530–532.

17. Zimmer H.G., Ibel H., Steinkopff G. Studies on the hexose monophosphate shunt in the myocardium during development of hypertrophy. Adv. Myocardiol. 1980; 1: 487–492.

18. Leong H.S., Grist M., Parsons H. et al. Accelerated rates of glycolysis in the hypertrophied heart: are they a methodological artifact? Am J Physiol. Endocrinol. Metab. 2002; 282: 1039–1045.

19. Young M.E., Yan J., Razeghi P. et al. Proposed regulation of gene expression by glucose in rodent heart. Gene Regul. Syst. Bio. 2007; 1: 251–262.

20. Kolwicz S.C.Jr., Tian R. Glucose metabolism and cardiac hypertrophy. Cardiovasc. Res. 2011; 90: 194–201.

21. Doenst T., Nguyen T.D., Abel E.D. Cardiac metabolism in heart failure: Implications beyond ATP production. Circ Res. 2013; 113: 709–724.

22. Ussher J.R., Elmariah S., Gerszten R.E. et al. The emerging role of metabolomics in the diagnosis and prognosis of cardiovascular disease. J. Am. Coll. Cardiol. 2016; 68: 2850–2870.

23. De Jong K.A., Lopaschuk G.D. Complex energy metabolic changes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. Can. J. Cardiol. 2017; 33: 860–871.

24. Neubauer S. The failing heart–an engine out of fuel. N. Engl. J. Med. 2007; 356: 1140–1151.

25. Nascimben L., Ingwall J.S., Pauletto P. et al. Creatine kinase system in failing and nonfailing human myocardium. Circulation. 1996; 94: 1894–1901.

26. van Bilsen M., van Nieuwenhoven F.A., van der Vusse G.J. Metabolic remodelling of the failing heart: beneficial or detrimental? Cardiovasc. Res.2009; 81: 420–428.

27. Scheubel R.J., Tostlebe M., Simm A. et al. Dysfunction of mitochondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression. J. Am. Coll. Cardiol. 2002; 40: 2174–2181.

28. Gupte A.A., Hamilton D.J., Cordero-Reyes A.M. et al. Mechanical unloading promotes myocardial energy recovery in human heart failure. Circ. Cardiovasc. Genet. 2014; 7: 266–276.

29. Sansbury B.E., DeMartino A.M., Xie Z. et al. Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ. Heart. Fail. 2014; 7: 634–642.

30. Sun H., Olson K.C., Gao C. et al. Catabolic defect of branched-chain amino acids promotes heart failure. Circulation. 2016; 133: 2038–2049. doi:10.1161/CIRCULATIONAHA.115.020226.

31. Aubert G., Martin O.J., Horton J.L. et al. The failing heart relies on ketone bodies as a fuel. Circulation. 2016; 133: CIRCULATIONAHA.115.017355.

32. Bedi K.C. Jr., Snyder N.W., Brandimarto J. et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation. 2016; 133: 706–716. doi: 10.1161/CIRCULATIONAHA.115.017545.

33. Ferrara C.T., Wang P., Neto EC. et al. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling. PLoS Genet. 2008. doi: 10.1371/journal.pgen.1000034.

34. Hunter W.G., Kelly J.P., McGarrah RW III. et al. Metabolic dysfunction in heart failure: diagnostic, prognostic, and pathophysiologic insights from metabolomic profiling. Curr. Heart Fail. Rep. 2016; 13: 119–131. doi: 10.1007/s11897-016-0289-5.

35. Doehner W., Frenneaux M., Anker SD. Metabolic impairment in heart failure: the myocardial and systemic perspective. J. Am. Coll. Cardiol. 2014; 64: 1388–1400. doi: 10.1016/j.jacc.2014.04.083.

36. Ahmad T., Kelly JP., McGarrah RW. et al. Prognostic implications of longchain acylcarnitines in heart failure and reversibility with mechanical circulatory support. J. Am. Coll. Cardiol. 2016; 67: 291–299. doi:10.1016/j.jacc.2015.10.079.

37. Hinterwirth H., Stegemann C., Mayr M. Lipidomics: quest for molecular lipid biomarkers in cardiovascular disease. Circ. Cardiovasc. Genet. 2014; 7: 941–954. doi: 10.1161/CIRCGENETICS.114.000550.

38. Sparagna G.C., Lesnefsky E.J. Cardiolipin remodeling in the heart. J. Cardiovasc Pharmacol. 2009; 53: 290–301. doi: 10.1097/FJC.0b013e31819b5461.

39. Saini-Chohan H.K., Holmes M.G., Chicco A.J. et al. Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure. J. Lipid Res. 2009; 50: 1600–1608. doi: 10.1194/jlr.M800561-JLR200.

40. Han X., Yang J., Cheng H. et al. Shotgun lipidomics identifies cardiolipin depletion in diabetic myocardium linking altered substrate utilization with mitochondrial dysfunction. Biochemistry. 2005; 44: 16684–16694. doi: 10.1021/bi051908a.

41. Benjamin E.J., Blaha M.J., Chiuve S.E. et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017; 135: 146–603. doi:10.1161/CIR.0000000000000485.

42. Stanley W.C., Recchia F.A., Lopaschuk G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 2005; 85: 1093–1129. doi: 10.1152/physrev.00006.2004.

43. Lopaschuk G. Regulation of carbohydrate metabolism in ischemia and reperfusion. Am. Heart J. 2000; 139: 115–119.

44. Lopaschuk G.D., Ussher J.R., Folmes C.D. et al. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 2010; 90: 207–258. doi: 10.1152/physrev.00015.2009.

45. Chouchani E.T., Pell V.R., Gaude E. et al. Ischemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014; 515: 431–435. doi: 10.1038/nature13909.

46. Li T., Zhang Z., Kolwicz SC.Jr. et al. Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury. Cell Metab. 2017; 25: 374–385. doi:10.1016/j.cmet.2016.11.005.

47. Gao, X., Ke, C., Liu, H. et al. Large-scale Metabolomic Analysis Reveals Potential Biomarkers for Early Stage Coronary Atherosclerosis. Sci. Rep. 2017; 7: 11817. https://doi.org/10.1038/s41598-017-12254-1

48. Newgard C.B. Metabolomics and metabolic diseases: where do we stand? Cell Metab. 2017; 25: 43–56. doi: 10.1016/j.cmet.2016.09.018.

49. Felig P., Marliss E., Cahill GF.Jr. Plasma amino acid levels and insulin secretion in obesity. N Engl. J. Med. 1969; 281: 811–816. doi:10.1056/NEJM196910092811503.

50. Newgard C.B., An J., Bain J.R. et al. A branched-chain amino acidrelated metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009; 9: 311–326. doi:10.1016/j.cmet.2009.02.002.

51. White P.J., Lapworth A.L., An J. et al. Branched-chain amino acid restriction inZucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol. Metab. 2016; 5: 538–551. doi: 10.1016/j.molmet.2016.04.006.

52. Shaham O., Wei R., Wang T.J. et al Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol. Syst. Biol. 2008; 4: 214. doi: 10.1038/msb.2008.50.

53. Huffman K.M., Shah S.H., Stevens R.D. et al. Relationships between circulating metabolic intermediates and insulinaction in overweight to obese, inactive men and women. Diabetes Care. 2009; 32: 1678–1683. doi: 10.2337/dc08-2075.

54. Tai E.S., Tan M.L., Stevens R.D. et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia. 2010; 53: 757–767. doi: 10.1007/s00125-009-1637-8.

55. Batch B.C., Shah S.H., Newgard C.B. et al. Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness. Metabolism. 2013; 62: 961–969. doi:10.1016/j.metabol.2013.01.007.

56. Wang T.J., Larson M.G., Vasan R.S. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011; 17: 448–453. doi: 10.1038/nm.2307.

57. Shah S.H., Crosslin D.R., Haynes C.S. et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia. 2012; 55: 321–330. doi: 10.1007/s00125-011-2356-5.

58. Laferrère B., Reilly D., Arias S., et al. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci. Transl. Med. 2011; 3: 80re2. doi:10.1126/scitranslmed.3002043.

59. Newgard C.B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012; 15: 606–614. doi:10.1016/j.cmet.2012.01.024.

60. Shah S.H., Newgard C.B. Integrated metabolomics and genomics: systems approaches to biomarkers and mechanisms of cardiovascular disease. Circ. Cardiovasc. Genet. 2015; 8: 410–419. doi: 10.1161/CIRCGENETICS.114.000223.

61. Shah S.H., Kraus W.E., Newgard C.B.. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation. 2012; 126: 1110–1120.doi: 10.1161/CIRCULATIONAHA.111.060368.

62. Shah S.H., Bain J.R., Muehlbauer M.J. et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ. Cardiovasc. Genet. 2010; 3: 207–214. doi: 10.1161/CIRCGENETICS.109.852814.

63. Ridaura V.K., Faith J.J., Rey F.E. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013; 341: 1241214. doi: 10.1126/science.1241214.

64. Feng Q., Liu Z., Zhong S. et al. “Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease”. Scientific Reportsvol. 2016; 6: Article ID 22525.

65. Jonsson A. L. and F. Backhed, “Role of gut microbiota in¨atherosclerosis,” Nature Reviews Cardiology. 2016; vol. 14, no. 2: 79–87.

66. Wang Z., Klipfell E., Bennett B.J. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011; 472: 57–63. doi: 10.1038/nature09922.

67. Tang W.H., Wang Z., Levison B.S. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl. J. Med. 2013; 368: 1575–1584. doi:10.1056/NEJMoa1109400.

68. Senthong V., Wang Z., Fan Y. et al. Trimethylamine N -oxide and mortality risk in patients with peripheral artery disease. J. Am. Heart Assoc. 2016; 5: e004237.

69. Tang W.H., Wang Z., Fan Y. et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am. Coll. Cardiol. 2014; 64: 1908–1914. doi:10.1016/j.jacc.2014.02.617.

70. Tang W.H., Wang Z., Kennedy D.J. et al. Gut microbiota-dependent trimethylamineN-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 2015; 116: 448–455. doi: 10.1161/CIRCRESAHA.116.305360.

71. Organ C.L., Otsuka H., Bhushan S. et al. Choline diet and its gut microbe–derived metabolite, trimethylamine N-oxide, exacerbate pressure overload–induced heart failure. Circ. Hear. Fail. 2016; 9: e 002314.

72. Senthong V., Wang Z., Li X.S. et al. Intestinal microbiota-generated metabolite trimethylamine-N-oxide and5-year mortality risk in stable coronary artery disease: the contributoryrole of intestinal microbiota in a COURAGE-like patient cohort. J. Am.Heart Assoc. 2016; 5: e002816.

73. Undurti A., Huang Y., Lupica J.A. et al. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J. Biol. Chem. 2009; 284: 30825–30835. doi:10.1074/jbc.M109.047605.

74. Wang Z., Roberts A.B., Buffa J.A. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163: 1585–1595. doi: 10.1016/j.cell.2015.11.055.

75. Gieger C., Geistlinger L., Altmaier E. et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 2008; 4: e1000282. doi: 10.1371/journal.pgen.1000282.

76. Illig T., Gieger C., Zhai G. et al. A genome-wide perspective of genetic variation in human metabolism. Nat. Genet. 2010; 42: 137–141. doi:10.1038/ng.507.

77. Suhre K., Shin S.Y., Petersen A.K. et al. CARDIoGRAM. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011; 477: 54–60. doi: 10.1038/nature10354.

78. Rhee E.P., Ho J.E., Chen M.H. et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab. 2013; 18: 130–143. doi: 10.1016/j.cmet.2013.06.013.

79. Draisma H.H.M., Pool R., Kobl M. et al. Genome-wide associationstudy identifies novel genetic variants contributing to variation inblood metabolite levels. Nat Commun. 2015; 6: 7208. doi: 10.1038/ncomms8208.

80. Bennett B.J., de Aguiar Vallim T.Q., Wang Z. et al. Trimethylamine-Noxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013; 17: 49–60. doi: 10.1016/j.cmet.2012.12.011.

81. Kraus W.E., Muoio D.M., Stevens R. et al. Metabolomic quantitative trait loci (mQTL) mapping implicates the ubiquitin proteasome system in cardiovascular disease pathogenesis. PLoS Genet. 2015; 11: e1005553. doi:10.1371/journal.pgen.1005553.

82. Mayr M., Madhu B., Xu Q. Proteomics and metabolomics combined in cardiovascular research. Trends Cardiovasc. Med. 2007; 17: 43–48. doi:10.1016/j.tcm.2006.11.004.

83. Mayr M., Chung Y.L., Mayr U. et al. Loss of PKC-delta alters cardiac metabolism. Am. J. Physiol. Heart Circ. Physiol. 2004. 287. P. 937–945. doi:10.1152/ajpheart.00877.2003.

84. Mayr M., Metzler B., Chung Y.L., et al. Ischemic preconditioning exaggerates cardiac damage in PKC-delta null mice. Am J Physiol Heart Circ Physiol. 2004; 287: 946–956. doi:10.1152/ajpheart.00878.2003.

85. Mayr M., Liem D., Zhang J. et al. Proteomic and metabolomic analysis of cardioprotection: interplay between protein kinase C epsilon and delta in regulating glucose metabolism of murine hearts. J. Mol. Cell Cardiol. 2009; 46: 268–277. doi:10.1016/j.yjmcc.2008.10.008.

86. Mayr M., Chung Y.L., Mayr U. et al. Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy metabolism. Arterioscler. Thromb. Vasc. Biol. 2005; 25: 2135–2142. doi: 10.1161/01.ATV.0000183928.25844.f6.

87. Perez-Riverol Y., Bai M., da Veiga Leprevost F. et al. Discovering and linking public omics data sets using the Omics Discovery Index. Nat. Biotechnol. 2017; 3: 406–409. doi: 10.1038/nbt.3790.

88. Noor Elad, Cherkaoui Sarah and Sauer Uwe. Biological insights through omics data integration. Current Opinion in Systems Biology. 2019; 15: 39–47. https://doi.org/10.1016/j.coisb.2019.03.007

89. Petersen A.K., Zeilinger S., Kastenmüller G. et al. Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum. Mol. Genet. 2014. 23. P. 534–545. doi:10.1093/hmg/ddt430.

90. Cook D.J., Nielsen J. Genome-scale metabolic models applied to human health and disease. Wiley Interdiscip Rev. Syst. Biol. Med. 2017; 9: 1393.

91. Duarte N.C., Becker S.A., Jamshidi N., et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA. 2007; 104: 1777–1782. doi: 10.1073/pnas.0610772104.

92. Karlstädt A., Fliegner D., Kararigas G. et al. CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism. BMC Syst Biol. 2012; 6: 114. doi:10.1186/1752-0509-6-114.

93. Karlstaedt A., Zhang X., Vitrac H. et al. Oncometabolite d-2-hydroxyglutarateimpairs α-ketoglutarate dehydrogenase and contractile function in rodent heart. Proc. Natl. Acad. Sci. USA. 2016; 113: 10436–10441. doi:10.1073/pnas.1601650113.

94. Chan S.Y., Loscalzo J. The emerging paradigm of network medicine in the study of human disease. Circ. Res. 2012; 111: 359–374. doi:10.1161/CIRCRESAHA.111.258541.


Для цитирования:


Абдуллаев А.А., Абдуллаева Г.Ж., Юсупова Х.Ф. МЕТАБОЛОМНЫЕ ПОДХОДЫ В ИЗУЧЕНИИ СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЙ. Евразийский кардиологический журнал. 2021;(1):106-117. https://doi.org/10.38109/2225-1685-2021-1-106-117

For citation:


Аbdullaev A.A., Аbdullaeva G.J., Usupova K.F. METABOLOMIC APPROACHES IN STUDYING OF CARDIOVASCULAR DISEASES. Eurasian heart journal. 2021;(1):106-117. (In Russ.) https://doi.org/10.38109/2225-1685-2021-1-106-117

Просмотров: 75


Creative Commons License
Контент доступен под лицензией BY NC ND.


ISSN 2225-1685 (Print)
ISSN 2305-0748 (Online)