Preview

Eurasian heart journal

Advanced search

ATHEROMATOSIS OF ARTERIAL INTIMA AS A RESULT OF THE BIOLOGICAL FUNCTION OF ENDOECOLOGY, BIOLOGICAL REACTION OF INFLAMMATION AND UTILIZATION OF NON-LIGAND PALMITIC VERY LOW DENSITY-LOW DENSITY LIPOPROTEINS

https://doi.org/10.38109/2225-1685-2016-2-68-78

Abstract

Phylogenetically late intima of elastic arteries has no proteins for transportation of non-ligand oxidized low density lipoproteins (LDL) adsorbed on the matrix to resident macrophages. Phylogenetically early cells realize the reaction of extracellular digestion by secreting the proteolytic enzymes metalloproteases in the matrix. They hydrolyze matrix proteoglycans, adsorbed and non-ligand LDL, absorb detritis, and terminate hydrolysis of the most hydrophobic polyenic cholesterol esters (poly-CE) in lysosomes. Smooth muscle cells migrate from arterial media, change their phenotype from contractile to synthetic and produce in situ de novo matrix proteoglycans. Elastic arterial wall consists of three layers: a) endothelial monolayer, b) intima + media (smooth muscle cells) and b) adventitia. It seems reasonable to define functional differences between phylogenetically early resident macrophages and phylogenetically late monocytes-macrophages. They may be associated with scavenger receptors, CD36 translocase activity, production of acid hydrolases for poly-CE or realization of the biological reaction of extracellular digestion. We suppose that atheromatous masses are formed in the matrix of arterial intima but not in lysosomes when the ability of monocytes-macrophages to provide endocytosis of non-ligand LDL from the matrix is limited. If atheromatosis is a syndrome caused by intracellular deficiency of essential polyenic fatty acids (PFA), intimal atheromatosis is associated with partial utilization of excess PFA in the matrix of elastic arteria. At late stages of phylogenesis the intima formed from smooth muscle cells of the media.

About the Authors

V. N. Titov
Russian Cardiology Research-and-Production Center, Ministry of Health, Moscow, Russia
Russian Federation


B. B. Shoybonov
Research Institute of Normal Physiology P.K. Anokhin, Moscow, Russia
Russian Federation


References

1. Лисицын Д.М., Разумовский С.Д., Тишенин М.А., Титов В.Н. Кинетические параметры окисления озоном индивидуальных жирных кислот. Бюлл. эксп. биол. и медицины. 2004; 138(11): 517 - 519. / Lisicyn D.M., Razumovskij S.D., Tishenin M.A., Titov V.N. Kineticheskie parametry okislenija ozonom individual'nyh zhirnyh kislot. Bjull. jeksp. biol. i mediciny. 2004; 138(11): 517 - 519.

2. Пигаревский П.В., Архипова О.Ю., Денисенко А.Д. Иммуногистохимическое обнаружение модифицированных липопротеинов в атеросклеротических поражениях аорты человека. Мед. иммунология. 2006; 8(5-6): 637 - 644. / Pigarevskij P.V., Arhipova O.Ju., Denisenko A.D. Immunogistohimicheskoe obnaruzhenie modificirovannyh lipoproteinov v ateroskleroticheskih porazhenijah aorty cheloveka. Med. immunologija. 2006; 8(5-6): 637 - 644.

3. Рожкова Т.А., Амелюшкина В.А., Зубарева М.Ю., Титов В.Н. Ксантелазмы: холестериновые поражения кожи век при гиперлипидемии у пациентов в клинической амбулаторной практике. Пластическая хирургия и косметология. 2015; 1: 1 - 24. / Rozhkova T.A., Ameljushkina V.A., Zubareva M.Ju., Titov V.N. Ksantelazmy: holesterinovye porazhenija kozhi vek pri giperlipidemii u pacientov v klinicheskoj ambulatornoj praktike. Plasticheskaja hirurgija i kosmetologija. 2015; 1:1 - 24.

4. Титов В.Н. Биологические функции (экзотрофия, гоме-остаз, эндоэкология), биологические реакции (экскреция, воспаление, трансцитоз) и патогенез артериальной гипертонии. М.-Тверь: Изд-во «Триада». 2009. 440 с. / Titov V.N. Biologicheskie funkcii (jekzotrofija, gomeostaz, jendojekologija), biologicheskie reakcii (jekskrecija, vospalenie, transcitoz) i patogenez arterial'noj gipertonii. M.-Tvef: Izd-vo «Triada». 2009.440 s.

5. Титов В.Н. Филогенетическая теория общей патологии. Патогенез болезней цивилизации. Атеросклероз. ИНФРА-М. М. 2014. 335 с. / Titov V.N. Filogeneticheskaja teorija obshhej patologii. Patogenez boleznej civilizacii. Ateroskleroz. INFRA-M. M. 2014. 335 s.

6. Титов В.Н. Филогенетическая теория общей патологии. Патогенез метаболических пандемий. Сахарный диабет. ИНФРА-М. М. 2014. 222 с. / Titov V.N. Filogeneticheskaja teorija obshhej patologii. Patogenez metabolicheskih pandemij. Saharnyj diabet. INFRA-M. M. 2014.222 s.

7. Титов В.Н., Ощепкова Е.В., Дмитриев В.А. С-реактивный белок, микроальбуминурия, эндогенное воспаление и артериальная гипертония. М.: РГГУ. 2009. 376 с. / Titov V.N., Oshchepkova E.V., Dmitriev V.A. S-reaktivnyj belok, mikroal'buminurija, jendogennoe vospalenie i arterial'naja gipertonija. M.: RGGU. 2009. 376 s.

8. Шойбонов Б.Б., Кравченко М.А., Баронец В.Ю и соавт. Определение атерогенности иммунных комплексов, содержащих модифицированные липопротеины, в тесте связывания комплемента. Патол. физиол. и эксп. терапия. 2014; 58(4): 133 - 138. / Shojbonov B.B., Kravchenko M.A., Baronec V.Ju., i soavt. Opredelenie aterogennosti immunnyh kompleksov, soderzhashhih modificirovannye lipoproteiny, v teste svjazyvanija komplementa. Patol. fiziol. i jeksp. terapija. 2014; 58(4): 133 - 138.

9. Boekholdt S.M., Hovingh G.K., Mora S. et al. Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials. J Am Coll Cardiol. 2014; 64(5): 485 - 494.

10. Botham K.M., Wheeler-Jones C.P. Postprandial lipoproteins and the molecular regulation of vascular homeostasis. Prog. Lipid. Res. 2013; 52(4): 446 - 464.

11. Chistiakov D.A., Bobryshev Y.V., Orekhov A.N. Changes in transcriptome of macrophages in atherosclerosis. J.Cell. Mol. Med. 2015; 19(6): 1163 - 1173.

12. Cui Y., Narasimhulu C.A., Liu L., LiX., Xiao Y., Zhang J. et al. Oxidized low-density lipoprotein alters endothelial progenitor cell populations. Front. Biosci. (Landmark Ed). 2015; 20: 975 - 988.

13. Custodis F., Laufs U. LDL-Cholesterol - Is there an "LDL hypothesis"? Dtsch. Med. Wochenschr. 2015; 140(10): 761 - 764.

14. Dobrzyn P., Jazurek M., Dobrzyn A. Stearoyl-CoA desaturase and insulin signaling--what is the molecular switch? Biochim. Biophys. Acta. 2010; 1797:1189 - 1194.

15. Fenyo I.M., Gafencu F.V. The involvement of the monocytes/ macrophages in chronic inflammation associated with atherosclerosis. Immuobiology. 2013; 218(11): 1376 - 1384.

16. Gleissner C.A. Macrophage Phenotype Modulation by CXCL4 in Atherosclerosis. Front Physiol. 2012; 3:1 - 7.

17. Gutowska I., Baskiewicz M., Machalinski B. et al. Blood arachidonic acid and HDL cholesterol influence the phagocytic abilities of human monocytes/macrophages. Ann. Nutr. Metab. 2010; 57(2): 143 - 149.

18. Hilgendorf I., Swirski F.K., Robbins C.S. Monocyte fate in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2015; 35(2):272 - 279.

19. Ilhan F., Kalkanli S.T. Atherosclerosis and the role of immune cells. World. J. Clin. Cases. 2015; 3(4): 345 - 352.

20. Ley K., Miller Y.I., Hedrick C.C. Monocyte and macrophage dynamics during atherogenesis. Arterioscler. Thromb. Vasc. Biol. 2011; 31(7): 1506-1516.

21. Lopez S., Berm dez B., Pacheco Y.M. et al. Dietary oleic and palmitic acids modulate the ratio of triacylglycerols to cholesterol in postprandial triacylglycerol-rich lipoproteins in men and cell viability and cycling in human monocytes. J. Nutr. 2007; 137(9): 1999 - 2005.

22. Maliolino C., Rossitto G., Caielli P. et al. The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts. Mediators. Inflamm. 2013; 2013:714653.

23. Mensink R.P. Effects of products made from a high-palmitic acid, trans-free semiliquid fat or a high-oleic acid, low-trans semiliquid fat on the serum lipoprotein profile and on C-reactive protein concentrations in humans. Eur. J. Clin. Nutr. 2008; 62(5): 617 - 624.

24. Mercado A., Melo Z. Pathophysiological aspects of K+: Cl -cotransporters. Rev. Invest. Clin. 2014; 66(2): 173 - 180.

25. Pavlides S., Gutierrez-Pajares J.L., Katiyar S. et al. Caveolin-1 regulates the anti-atherogenic properties of macrophages. Cell. Tissue. Res. 2014; 358(3): 821 - 831.

26. Peter A., Cegan A., Wagner S. et al. Hepatic lipid composition and stearoyl-coenzyme A desaturase 1 mRNA expression can be estimated from plasma VLDL fatty acid ratios. Clin. Chem. 2009; 55(12): 2113 - 2120.

27. Provost E.B., Madhloum N., Int Panis L. et al. Carotid intima-media thickness, a marker of subclinical atherosclerosis, and particulate air pollution exposure: the meta-analytical evidence. PLoS. One. 2015; 10(5): e0127014.

28. Rainwater D.L., Shi Q, Mahaney M.C. et al. Genetic regulation of endothelial inflammatory responses in baboons. Arterioscler. Thromb. Vasc. Biol. 2010; 30(8): 1628 - 1633.

29. Sleiman D., Al-Badri M.R., Azar S.T. Effect of mediterranean diet in diabetes control and cardiovascular risk modification: a systematic review. Front. Public. Health. 2015; 3:69 - 76.

30. Tacke F., Zimmermann H.W. Macrophahe heterogeneity in liver injury and fibrosis. J. Hepatol. 2014; 60(5): 1090 - 1096.

31. Zhang R., He G.Z., Wang Y.K., Ma E.L. Omega-3 polyunsaturated fatty acids inhibit the increase in cytokines and chemotactic factors induced in vitro by lymph fluid from an intestinal ischemia-reperfusion injury model. Nutrition. 2015; 31(3): 508 - 514.


Review

For citations:


Titov V.N., Shoybonov B.B. ATHEROMATOSIS OF ARTERIAL INTIMA AS A RESULT OF THE BIOLOGICAL FUNCTION OF ENDOECOLOGY, BIOLOGICAL REACTION OF INFLAMMATION AND UTILIZATION OF NON-LIGAND PALMITIC VERY LOW DENSITY-LOW DENSITY LIPOPROTEINS. Eurasian heart journal. 2016;(2):68-78. (In Russ.) https://doi.org/10.38109/2225-1685-2016-2-68-78

Views: 843


ISSN 2225-1685 (Print)
ISSN 2305-0748 (Online)